1
|
Yang Y, Kong X, Niu B, Yang J, Chen Q. Differences in Biofilm Formation of Listeria monocytogenes and Their Effects on Virulence and Drug Resistance of Different Strains. Foods 2024; 13:1076. [PMID: 38611380 PMCID: PMC11011679 DOI: 10.3390/foods13071076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Listeria monocytogenes is recognized as one of the primary pathogens responsible for foodborne illnesses. The ability of L. monocytogenes to form biofilms notably increases its resistance to antibiotics such as ampicillin and tetracycline, making it exceedingly difficult to eradicate. Residual bacteria within the processing environment can contaminate food products, thereby posing a significant risk to public health. In this study, we used crystal violet staining to assess the biofilm-forming capacity of seven L. monocytogenes strains and identified ATCC 19112 as the strain with the most potent biofilm-forming. Subsequent fluorescence microscopy observations revealed that the biofilm-forming capacity was markedly enhanced after two days of culture. Then, we investigated into the factors contributing to biofilm formation and demonstrated that strains with more robust extracellular polymer secretion and self-agglutination capabilities exhibited a more pronounced ability to form biofilms. No significant correlation was found between surface hydrophobicity and biofilm formation capability. In addition, we found that after biofilm formation, the adhesion and invasion of cells were enhanced and drug resistance increased. Therefore, we hypothesized that the formation of biofilm makes L. monocytogenes more virulent and more difficult to remove by antibiotics. Lastly, utilizing RT-PCR, we detected the expression levels of genes associated with biofilm formation, including those involved in quorum sensing (QS), flagellar synthesis, and extracellular polymer production. These genes were significantly upregulated after biofilm formation. These findings underscore the critical relationship between extracellular polymers, self-agglutination abilities, and biofilm formation. In conclusion, the establishment of biofilms not only enhances L. monocytogenes' capacity for cell invasion and adhesion but also significantly increases its resistance to drugs, presenting a substantial threat to food safety.
Collapse
Affiliation(s)
- Yujuan Yang
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.Y.); (B.N.)
| | - Xiangxiang Kong
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.Y.); (B.N.)
| | - Jielin Yang
- Technical Centre for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.Y.); (B.N.)
| |
Collapse
|
2
|
Antimicrobial Resistance of Listeria monocytogenes from Animal Foods to First- and Second-Line Drugs in the Treatment of Listeriosis from 2008 to 2021: A Systematic Review and Meta-Analysis. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:1351983. [PMID: 36249588 PMCID: PMC9568363 DOI: 10.1155/2022/1351983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
First-line drugs for the treatment of listeriosis are the same around the world, but particular conditions might reduce their efficacy, including antimicrobial resistance. Therefore, this study aimed to verify, based on a systematic review and meta-analysis, whether the prevalence of antimicrobial resistance in Listeria monocytogenes from animal foods is higher for first- or second-line antimicrobials. From the total of 302 identified studies, 16 met all the eligibility criteria from 2008 to 2021 and were included in this meta-analysis. They comprised a dataset of 1152 L. monocytogenes isolates, obtained from different animal food products, food processing environment, and live animals. The included studies were developed in South America (n = 5), Europe (n = 4), Asia (n = 3), Africa (n = 2), and North America (n = 2), testing a total of 35 different antimicrobials, 11 of them classified as first-line drugs. Complete lack of antimicrobial resistance across the studies (all L. monocytogenes isolates tested as susceptible) was only observed for linezolid, while widespread antimicrobial resistance (all L. monocytogenes isolates tested resistant) was described for amoxicillin, benzylpenicillin, cefoxitin, fusidic acid, imipenem, sulfamethoxazole, and vancomycin. Overall, the meta-analysis results indicated no evidence that antimicrobial resistance in L. monocytogenes isolated from animal-based food is higher for first-line antimicrobials compared to second-line compounds (p=0.37). A greater volume of publication, together with better characterization of the isolates, is still needed for a more precise estimate of the real prevalence of antimicrobial resistance in L. monocytogenes.
Collapse
|
3
|
The combined bactericidal effect of nisin and thymoquinone against Listeria monocytogenes in Tryptone Soy Broth and sterilized milk. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Zhao Q, Hu P, Li Q, Zhang S, Li H, Chang J, Jiang Q, Zheng Y, Li Y, Liu Z, Ren H, Lu S. Prevalence and transmission characteristics of Listeria species from ruminants in farm and slaughtering environments in China. Emerg Microbes Infect 2021; 10:356-364. [PMID: 33560938 PMCID: PMC7928038 DOI: 10.1080/22221751.2021.1888658] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Listeria monocytogenes is an important foodborne pathogen, and is ubiquitously distributed in the natural environment. Cattle and sheep, as natural hosts, can transmit L. monocytogenes to related meat and dairy products. In this study, the prevalence, distribution, and transmission characteristics of Listeria were analysed by investigating 5214 samples of cattle and sheep in farm and slaughtering environments in China. A low contamination incidence of L. monocytogenes (0.5%, 20/4430) was observed in farm environment, but there was a high contamination incidence in slaughtering environment (9.4%, 74/784). The incidence of L. innocua in cattle and sheep farm and slaughtering environments is more common and significantly higher (9.7%, 508/5214) than that of L. monocytogenes (1.8%, 94/5214). The distinct molecular and genetic characteristics of Listeria by PFGE and MLST indicated that L. monocytogenes and L. innocua were gradually transmitted from the farm and slaughtering environments to end products, such as beef and mutton along the slaughtering chain. The ST7, ST9, ST91, and ST155 found in our study were associated with the human listeriosis cases in China. In addition, the findings of virulence markers (inlC, inlJ, LIPI-3, LIPI-4, and ECIII) concerned with the pathogenesis of human listeriosis and antibiotics resistance of L. monocytogenes in this study implies a potential public health risk. This study fills the gap in the epidemiology of beef cattle and sheep that carry Listeria in farm and slaughtering environments in major cattle and sheep producing areas in China.
Collapse
Affiliation(s)
- Qiang Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| | - Pan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| | - Qianqian Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| | - Shasha Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| | - Hanxiao Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| | - Jiang Chang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| | - Qiujie Jiang
- Jilin Center for Animal Disease Control and Prevention, Changchun, Jilin, People's Republic of China
| | - Yu Zheng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| | - Yansong Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| | - Zengshan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| | - Honglin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| | - Shiying Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
5
|
Antibiofilm activity of shikonin against Listeria monocytogenes and inhibition of key virulence factors. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107558] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Miao X, Liu H, Zheng Y, Guo D, Shi C, Xu Y, Xia X. Inhibitory Effect of Thymoquinone on Listeria monocytogenes ATCC 19115 Biofilm Formation and Virulence Attributes Critical for Human Infection. Front Cell Infect Microbiol 2019; 9:304. [PMID: 31508379 PMCID: PMC6718631 DOI: 10.3389/fcimb.2019.00304] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
This study aimed to determine the antimicrobial activity of thymoquinone (TQ) against Listeria monocytogenes, and to examine its inhibitory effects on biofilm formation, motility, hemolysin production, and attachment-invasion of host cells. The minimum inhibitory concentrations (MICs) of TQ against eight different L. monocytogenes strains ranged from 6.25-12.50 μg/mL. Crystal violet staining showed that TQ clearly reduced biofilm biomass at sub-MICs in a dose-dependent manner. Scanning electron microscopy suggested that TQ inhibited biofilm formation on glass slides and induced an apparent collapse of biofilm architecture. At sub-MICs, TQ effectively inhibited the motility of L. monocytogenes ATCC 19115, and significantly impacted adhesion to and invasion of human colon adenocarcinoma cells as well as the secretion of listeriolysin O. Supporting these findings, real-time quantitative polymerase chain reaction analysis revealed that TQ down-regulated the transcription of genes associated with motility, biofilm formation, hemolysin secretion, and attachment-invasion in host cells. Overall, these findings confirm that TQ has the potential to be used to combat L. monocytogenes infection.
Collapse
Affiliation(s)
- Xin Miao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Huanhuan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yangyang Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yunfeng Xu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Sino-US Joint Research Center for Food Safety, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Li W, Bai L, Fu P, Han H, Liu J, Guo Y. The Epidemiology ofListeria monocytogenesin China. Foodborne Pathog Dis 2018; 15:459-466. [DOI: 10.1089/fpd.2017.2409] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Weiwei Li
- Division of Foodborne Disease Surveillance, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Li Bai
- Division of Foodborne Disease Surveillance, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Ping Fu
- Division of Foodborne Disease Surveillance, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Haihong Han
- Division of Foodborne Disease Surveillance, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jikai Liu
- Division of Foodborne Disease Surveillance, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yunchang Guo
- Division of Foodborne Disease Surveillance, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
8
|
Fan Q, Zhang Y, Yang H, Wu Q, Shi C, Zhang C, Xia X, Wang X. Effect of Coenzyme Q0 on biofilm formation and attachment-invasion efficiency of Listeria monocytogenes. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Prevalence and methodologies for detection, characterization and subtyping of Listeria monocytogenes and L. ivanovii in foods and environmental sources. FOOD SCIENCE AND HUMAN WELLNESS 2017. [DOI: 10.1016/j.fshw.2017.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Du XJ, Zhang X, Wang XY, Su YL, Li P, Wang S. Isolation and characterization of Listeria monocytogenes in Chinese food obtained from the central area of China. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Molecular characterization and antimicrobial susceptibility of Listeria monocytogenes isolated from foods and humans. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.04.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Gu Y, Liang X, Huang Z, Yang Y. Outbreak of Listeria Monocytogenes in Pheasants. Poult Sci 2015; 94:2905-8. [PMID: 26476090 DOI: 10.3382/ps/pev264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is capable of infecting almost all animals. However, outbreaks of listeriosis are infrequent in birds. This report describes an outbreak of listeriosis in a small pheasant (Phasianus colchicus) breeder farm with more than 2,000 pheasants from Hubei province of the People's Republic of China. The affected flock consisted of adult and young birds. Approximately 300 young birds and a few adult birds were found dead within a few days of the onset of clinical signs. Twenty-five dead birds were collected for further examination. Histopathological lesions in the visceral organs were characterized by monocyte infiltration and proliferation. Localized encephalitis and meningitis were detected in the brains of dead birds. Gram-positive organisms were observed in heart blood smear, liver, and brain impression smears. The organisms were isolated from fresh liver and were identified as L. monocytogenes serotype 4b based on multiplex polymerase chain reaction (PCR) and hlyA gene sequence analysis. This is the first report describing outbreak of listeriosis in pheasant flock.
Collapse
Affiliation(s)
- Yufang Gu
- College of Animal Science, Yangtze University, Jingzhou 434025, P.R. China
| | - Xiongyan Liang
- College of Animal Science, Yangtze University, Jingzhou 434025, P.R. China
| | - Zhuan Huang
- College of Animal Science, Yangtze University, Jingzhou 434025, P.R. China
| | - Yuying Yang
- College of Animal Science, Yangtze University, Jingzhou 434025, P.R. China
| |
Collapse
|
13
|
Chen M, Wu Q, Zhang J, Wu S, Guo W. Prevalence, enumeration, and pheno- and genotypic characteristics of Listeria monocytogenes isolated from raw foods in South China. Front Microbiol 2015; 6:1026. [PMID: 26483765 PMCID: PMC4586447 DOI: 10.3389/fmicb.2015.01026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/09/2015] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen that can cause serious illness in immunocompromised individuals, pregnant women, the elderly, and newborns. The aim of this study was to: (i) evaluate the prevalence and contamination level [most probable number (MPN)] of L. monocytogenes in 567 retail raw foods (fishery products, n = 154; raw/fresh meat, n = 123; frozen foods, n = 110; edible fungi, n = 108; vegetables, n = 72) collected from South China and (ii) to gain further knowledge on the phenotype and genotype distributions of this important foodborne pathogen. Approximately 22% of the samples were positive for L. monocytogenes. The contamination levels were between 0.3 and 10 MPN/g in 75.0%, between 10 and 100 MPN/g in 11.0% and less than 100 MPN/g in 14.0% of the countable samples. Five serogroups were identified among the 177 foodborne L. monocytogenes isolates, with 1/2a-3a (42.4%) and 1/2b-3b (26.0%) serogroups being the most dominant. Serogroups I.1 and II.2 were only found in the edible mushrooms, while serogroup III was dominant in the fishery products, suggesting that specific serogroups of L. monocytogenes may have distinct ecological niches. Ten (5.6%) L. monocytogenes isolates exhibited multidrug resistance. Genetic relatedness analysis revealed the absence of distinct associations between specific food types, antibiotic resistance, serogroups, and genetic diversity. The present study provided the first baseline data on the prevalence, contamination level, and characteristics of L. monocytogenes isolated from raw foods in South China. Some multidrug resistant strains belonged to the epidemiologically important serogroups (I.1 and II.1), implying a potential public health risk. In addition, these findings also provide basic information for the Chinese food safety associated authorities to draft appropriate standards to control L. monocytogenes contamination and improve microbiological safety of raw foods.
Collapse
Affiliation(s)
- Moutong Chen
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, China ; School of Bioscience and Bioengineering, South China University of Technology Guangzhou, China
| | - Qingping Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, China
| | - Jumei Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, China
| | - Shi Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, China ; School of Bioscience and Bioengineering, South China University of Technology Guangzhou, China
| | - Weipeng Guo
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, China
| |
Collapse
|
14
|
Ristori CA, Rowlands REG, Martins CG, Barbosa ML, Yoshida JT, de Melo Franco BD. Prevalence and Populations ofListeria monocytogenesin Meat Products Retailed in Sao Paulo, Brazil. Foodborne Pathog Dis 2014; 11:969-73. [DOI: 10.1089/fpd.2014.1809] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | | | | | | | - Bernadette D.G. de Melo Franco
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Sugiri YD, Gölz G, Meeyam T, Baumann MPO, Kleer J, Chaisowwong W, Alter T. Prevalence and antimicrobial susceptibility of Listeria monocytogenes on chicken carcasses in Bandung, Indonesia. J Food Prot 2014; 77:1407-10. [PMID: 25198605 DOI: 10.4315/0362-028x.jfp-13-453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was conducted to determine the prevalence and quantify the number of Listeria monocytogenes in fresh chicken carcasses sold in traditional markets and supermarkets in Bandung, West Java, Indonesia, and to determine the antimicrobial resistance patterns of the isolated L. monocytogenes strains. The overall prevalence of L. monocytogenes in chicken carcasses was 15.8% (29/184). When comparing samples from traditional markets and supermarkets, no significant difference in the L. monocytogenes prevalence was detectable (15.2 versus 16.3%). Of the samples, 97.3% had L. monocytogenes counts <100 CFU/g, 2.2% had L. monocytogenes counts between 101 and 1,000 CFU/g, and 0.5% had L. monocytogenes counts of 1,001 to 10,000 CFU/g. Of the isolates, 27.6% were resistant to at least one of the 10 antimicrobials tested, with the major resistant phenotypes to penicillin (17.2%), ampicillin (6.9%), and erythromycin (6.9%). All 29 isolates recovered in this study were grouped into the molecular serogroup IIb, comprising the serovars 1/2b, 3b, and 7.
Collapse
Affiliation(s)
- Yoni Darmawan Sugiri
- Veterinary Public Health Centre for Asia Pacific, Faculty of Veterinary Medicine, Chiang Mai University, Mae Hia, Muang, Chiang Mai 50100, Thailand; Balai Pengujian dan Penyidikan Penyakit Hewan dan Kesmavet (Animal Health and Veterinary Public Health Laboratory), West Java Livestock Services, Jl. Tangkuban Parahu KM. 22 Cikole Lembang, Kab. Bandung Barat 40391, Jawa Barat, Indonesia
| | - Greta Gölz
- Institute of Food Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| | - Tongkorn Meeyam
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Mae Hia, Muang, Chiang Mai 50100, Thailand
| | - Maximilian P O Baumann
- International Animal Health, Department of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| | - Josef Kleer
- Institute of Food Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| | - Warangkhana Chaisowwong
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Mae Hia, Muang, Chiang Mai 50100, Thailand
| | - Thomas Alter
- Institute of Food Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany.
| |
Collapse
|