1
|
Chen S, Zhang Y. Mechanism and application of Lactobacillus in type 2 diabetes-associated periodontitis. Front Public Health 2023; 11:1248518. [PMID: 38098816 PMCID: PMC10720667 DOI: 10.3389/fpubh.2023.1248518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) accelerates the progression of periodontitis through diverse pathways. Abnormal immune responses, excessive activation of inflammation, increased levels of advanced glycation end products, and oxidative stress have defined roles in the pathophysiological process of T2DM-associated periodontitis. Furthermore, in the periodontium of diabetic individuals, there are high levels of advanced glycation end-products and glucose. Meanwhile, progress in microbiomics has revealed that dysbacteriosis caused by T2DM also contributes to the progression of periodontitis. Lactobacillus, owing to its fine-tuning function in the local microbiota, has sparked tremendous interest in this field. Accumulating research on Lactobacillus has detailed its beneficial role in both diabetes and oral diseases. In this study, we summarize the newly discovered mechanisms underlying Lactobacillus-mediated improvement of T2DM-associated periodontitis and propose the application of Lactobacillus in the clinic.
Collapse
Affiliation(s)
- Sisi Chen
- Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Medical University, Chongqing, China
| | - Yuhan Zhang
- Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Cha MH, Ryu JG, Chi YM, Woo GJ. Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Fresh Produce and Agricultural Environments in Korea. J Food Prot 2020; 83:1115-1124. [PMID: 32083678 DOI: 10.4315/jfp-19-483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/20/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT This study was conducted to characterize Escherichia coli strains and evaluate the spread of antimicrobial resistance among these strains from fresh produce and farm environments in Korea. We then conducted phenotypic and genetic studies on antimicrobial-resistant isolates. We determined the genetic epidemiological characteristics of isolates that produced extended-spectrum β-lactamase (ESBL) and confirmed plasmid transfer in isolates that carried blaCTX-M-type genes. E. coli strains were isolated from 8 samples of fresh produce and 152 samples from the farm environment collected from May 2014 to June 2016. Cephalosporin resistance was the most prevalent (61.8%) type of resistance among the isolates. Five ESBL-producing strains with high genetic homology with E. coli of human or livestock origin were identified. Lateral transfer of plasmids harboring blaCTX-M-type genes to transconjugants was successful. Two isolates from Chinese cabbage and from water samples collected from a nearby stream harbored the ISEcp1-blaCTX-M-55-orf477 operon and were confirmed as sequence type 1196 and the same type of plasmid replicon, suggesting that cross-contamination was highly likely. A high-risk clone of sequence type 69 (clonal complex 69) isolates was also recovered from the farm environment. This study provides genetic evidence that antimicrobial resistance factors in E. coli from farm environments originate in the clinic or in livestock, highlighting the fact that good agricultural practices in farming are important to inhibit the spread of antimicrobial resistance to bacteria on fresh produce. HIGHLIGHTS
Collapse
Affiliation(s)
- Min-Hyeok Cha
- Laboratory of Food Safety and Evaluation, Department of Biotechnology, Graduate School, Korea University Seoul, Republic of Korea.,Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju, Republic of Korea
| | - Jae-Gee Ryu
- Microbial Safety Team, National Academy of Agricultural Science, Rural Development Administration, Wanju, Republic of Korea
| | - Young-Min Chi
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University Seoul, Republic of Korea
| | - Gun-Jo Woo
- Laboratory of Food Safety and Evaluation, Department of Biotechnology, Graduate School, Korea University Seoul, Republic of Korea
| |
Collapse
|
3
|
Glaize A, Gutierrez-Rodriguez E, Hanning I, Díaz-Sánchez S, Gunter C, van Vliet AHM, Watson W, Thakur S. Transmission of antimicrobial resistant non-O157 Escherichia coli at the interface of animal-fresh produce in sustainable farming environments. Int J Food Microbiol 2019; 319:108472. [PMID: 31901751 DOI: 10.1016/j.ijfoodmicro.2019.108472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/24/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
The interaction of typical host adapted enteric bacterial pathogens with fresh produce grown in fields is complex. These interactions can be more pronounced in co-managed or sustainable farms where animal operations are, by design, close to fresh produce, and growers frequently move between the two production environments. The primary objectives of this study were to 1) determine the transmission of STEC or enteric pathogens from small and large animal herds or operations to fresh produce on sustainable farms in TN and NC, 2) identify the possible sources that impact transmission of AMR E. coli, specifically STEC on these systems, and 3) WGS to characterize recovered E. coli from these sources. Samples were collected from raw and composted manure, environment, and produce sources. The serotype, virulence, and genotypic resistance profile were determined using the assembled genome sequences sequenced by Illumina technology. Broth microdilution was used to determine the antimicrobial susceptibility of each isolate against a panel of fourteen antimicrobials. The prevalence of E. coli increased during the summer season for all sources tested. ParSNP trees generated demonstrated that the transmission of AMR E. coli is occurring between animal feeding operations and fresh produce. Ten isolates were identified as serotype O45, a serotype that is associated with the "Big Six" group that is frequently linked with foodborne outbreaks caused by non-O157 E. coli. However, these isolates did not possess the stx gene. The highest frequency of resistance was detected against streptomycin (n = 225), ampicillin (n = 190) and sulfisoxazole FIS (n = 140). A total of 35 (13.7%) isolates from two TN farms were positive for the blaCMY (n = 5) and blaTEM (n = 32) genes. The results of this study show the potential of AMR E. coli transmission between animal feeding operations and fresh produce, and more studies are recommended to study this interaction and prevent dissemination in sustainable farming systems.
Collapse
Affiliation(s)
- Ayanna Glaize
- Department of Population Health & Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Eduardo Gutierrez-Rodriguez
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Irene Hanning
- College of Genome Sciences and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sandra Díaz-Sánchez
- College of Genome Sciences and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Chris Gunter
- Extension Vegetable Production Specialist, Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK
| | - Wes Watson
- Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Siddhartha Thakur
- Department of Population Health & Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
4
|
Hölzel CS, Tetens JL, Schwaiger K. Unraveling the Role of Vegetables in Spreading Antimicrobial-Resistant Bacteria: A Need for Quantitative Risk Assessment. Foodborne Pathog Dis 2019; 15:671-688. [PMID: 30444697 PMCID: PMC6247988 DOI: 10.1089/fpd.2018.2501] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In recent years, vegetables gain consumer attraction due to their reputation of being healthy in combination with low energy density. However, since fresh produce is often eaten raw, it may also be a source for foodborne illness. The presence of antibiotic-resistant bacteria might pose a particular risk to the consumer. Therefore, this review aims to present the current state of knowledge concerning the exposure of humans to antibiotic-resistant bacteria via food of plant origin for quantitative risk assessment purposes. The review provides a critical overview of available information on hazard identification and characterization, exposure assessment, and risk prevention with special respect to potential sources of contamination and infection chains. Several comprehensive studies are accessible regarding major antimicrobial-resistant foodborne pathogens (e.g., Salmonella spp., Listeria spp., Bacillus cereus, Campylobacter spp., Escherichia coli) and other bacteria (e.g., further Enterobacteriaceae, Pseudomonas spp., Gram-positive cocci). These studies revealed vegetables to be a potential—although rare—vector for extended-spectrum beta-lactamase-producing Enterobacteriaceae, mcr1-positive E. coli, colistin- and carbapenem-resistant Pseudomonas aeruginosa, linezolid-resistant enterococci and staphylococci, and vancomycin-resistant enterococci. Even if this provides first clues for assessing the risk related to vegetable-borne antimicrobial-resistant bacteria, the literature research reveals important knowledge gaps affecting almost every part of risk assessment and management. Especially, the need for (comparable) quantitative data as well as data on possible contamination sources other than irrigation water, organic fertilizer, and soil becomes obvious. Most crucially, dose–response studies would be needed to convert a theoretical “risk” (e.g., related to antimicrobial-resistant commensals and opportunistic pathogens) into a quantitative risk estimate.
Collapse
Affiliation(s)
- Christina Susanne Hölzel
- 1 Animal Hygiene and Animal Health Management, Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University Kiel (CAU) , Kiel, Germany
| | - Julia Louisa Tetens
- 1 Animal Hygiene and Animal Health Management, Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University Kiel (CAU) , Kiel, Germany
| | - Karin Schwaiger
- 2 Department of Veterinary Sciences, Institute of Food Safety, Ludwig-Maximilians-University Munich (LMU) , Munich, Germany
| |
Collapse
|
5
|
Kim HJ, Oh T, Baek SY. Multidrug Resistance, Biofilm Formation, and Virulence of Escherichia coli Isolates from Commercial Meat and Vegetable Products. Foodborne Pathog Dis 2018; 15:782-789. [PMID: 30183351 DOI: 10.1089/fpd.2018.2448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Escherichia coli is an important food safety and public health concern because of its pathogenicity and potential for antimicrobial resistance. E. coli isolates as food contaminants and their antimicrobial resistance, biofilm-forming ability, and virulence genes were analyzed to identify the potential of E. coli in food as a major transmission route for antimicrobial resistance and infectious agents. Among the 709 samples of minced meat and fresh vegetable products tested, 18.6% were positive for E. coli. One hundred nine (29.2%) out of 383 E. coli isolates were resistant to 1 or more of the 25 tested antimicrobials. Among the isolates from minced pork, the highest rate of resistance was observed for tetracycline (52.8%), followed by ampicillin (41.6%). The highest resistance rates against tetracycline were coincident with the high amount of tetracycline sold for veterinary use. Because penicillin is the most frequently used antimicrobial in humans, with 4.52 defined daily doses per 1000 people per day, the high rate of resistance to ampicillin (41.6%) supported the potential risk of E. coli food contaminants. However, only 1.3% of the isolates possessed the virulence genes commonly involved in foodborne outbreaks of E. coli. Sixty-seven isolates (17.5%) were multidrug-resistant (MDR), and the highest MDR was observed against 14 antimicrobials. Most of the MDR E. coli isolates showed biofilm-forming ability. Therefore, these isolates will have additional protection from environmental stresses, including antimicrobials. Given the importance of E. coli to food safety and public health, our results on the prevalence of antimicrobial resistance and virulence factors provide useful information for risk management options to protect public health.
Collapse
Affiliation(s)
- Hyun Jung Kim
- 1 Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute , Wanju, Korea
- 2 Department of Food Biotechnology, University of Science and Technology , Daejeon Korea
| | - Taeyoung Oh
- 1 Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute , Wanju, Korea
| | - Seung-Youb Baek
- 1 Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute , Wanju, Korea
| |
Collapse
|
6
|
Virulence Genes and Phenotypic Evaluation of the Antibiotic Resistance of Vero Toxin Producing Escherichia coli Recovered From Milk, Meat, and Vegetables. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.62288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
7
|
Harvey RR, Zakhour CM, Gould LH. Foodborne Disease Outbreaks Associated with Organic Foods in the United States. J Food Prot 2016; 79:1953-1958. [PMID: 28221898 PMCID: PMC7881495 DOI: 10.4315/0362-028x.jfp-16-204] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Consumer demand for organically produced foods is increasing in the United States as well as globally. Consumer perception often credits organic foods as being safer than conventionally produced foods, although organic standards do not directly address safety issues such as microbial or chemical hazards. We reviewed outbreaks reported to the Centers for Disease Control and Prevention's Foodborne Disease Outbreak Surveillance System where the implicated food was reported to be organic. Information collected for each outbreak included the year, state, number of illnesses, pathogen, and implicated food. We identified 18 outbreaks caused by organic foods from 1992 to 2014, resulting in 779 illnesses, 258 hospitalizations, and 3 deaths; 56% of outbreaks occurred from 2010 to 2014. Nine outbreaks occurred in a single state, and nine outbreaks were multistate. Salmonella sp. (44% of outbreaks) and Escherichia coli O157:H7 (33%) were the most commonly occurring pathogens. Eight of the outbreaks were attributed to produce items, four to unpasteurized dairy products, two to eggs, two to nut and seed products, and two to multi-ingredient foods. Fifteen (83%) outbreaks were associated with foods that were definitely or likely U.S. Department of Agriculture certified. More foodborne outbreaks associated with organic foods in the United States have been reported in recent years, in parallel with increases in organic food production and consumption. We are unable to assess risk of outbreaks due to organic foods compared with conventional foods because foodborne outbreak surveillance does not systematically collect food production method. Food safety requires focused attention by consumers, regardless of whether foods are produced organically or conventionally. Consumers should be aware of the risk of milk and produce consumed raw, including organic.
Collapse
Affiliation(s)
- R Reid Harvey
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road N.E., Mail Stop A-38, Atlanta, Georgia 30329, USA
| | - Christine M Zakhour
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road N.E., Mail Stop A-38, Atlanta, Georgia 30329, USA
| | - L Hannah Gould
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road N.E., Mail Stop A-38, Atlanta, Georgia 30329, USA
| |
Collapse
|
8
|
Wyrsch ER, Roy Chowdhury P, Chapman TA, Charles IG, Hammond JM, Djordjevic SP. Genomic Microbial Epidemiology Is Needed to Comprehend the Global Problem of Antibiotic Resistance and to Improve Pathogen Diagnosis. Front Microbiol 2016; 7:843. [PMID: 27379026 PMCID: PMC4908116 DOI: 10.3389/fmicb.2016.00843] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/22/2016] [Indexed: 11/18/2022] Open
Abstract
Contamination of waste effluent from hospitals and intensive food animal production with antimicrobial residues is an immense global problem. Antimicrobial residues exert selection pressures that influence the acquisition of antimicrobial resistance and virulence genes in diverse microbial populations. Despite these concerns there is only a limited understanding of how antimicrobial residues contribute to the global problem of antimicrobial resistance. Furthermore, rapid detection of emerging bacterial pathogens and strains with resistance to more than one antibiotic class remains a challenge. A comprehensive, sequence-based genomic epidemiological surveillance model that captures essential microbial metadata is needed, both to improve surveillance for antimicrobial resistance and to monitor pathogen evolution. Escherichia coli is an important pathogen causing both intestinal [intestinal pathogenic E. coli (IPEC)] and extraintestinal [extraintestinal pathogenic E. coli (ExPEC)] disease in humans and food animals. ExPEC are the most frequently isolated Gram negative pathogen affecting human health, linked to food production practices and are often resistant to multiple antibiotics. Cattle are a known reservoir of IPEC but they are not recognized as a source of ExPEC that impact human or animal health. In contrast, poultry are a recognized source of multiple antibiotic resistant ExPEC, while swine have received comparatively less attention in this regard. Here, we review what is known about ExPEC in swine and how pig production contributes to the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Ethan R Wyrsch
- The ithree Institute, University of Technology Sydney, Sydney NSW, Australia
| | - Piklu Roy Chowdhury
- The ithree Institute, University of Technology Sydney, SydneyNSW, Australia; NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, SydneyNSW, Australia
| | - Toni A Chapman
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Sydney NSW, Australia
| | - Ian G Charles
- Institute of Food Research, Norwich Research Park Norwich, UK
| | - Jeffrey M Hammond
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Sydney NSW, Australia
| | - Steven P Djordjevic
- The ithree Institute, University of Technology Sydney, Sydney NSW, Australia
| |
Collapse
|
9
|
An Environmental Shiga Toxin-Producing Escherichia coli O145 Clonal Population Exhibits High-Level Phenotypic Variation That Includes Virulence Traits. Appl Environ Microbiol 2015; 82:1090-1101. [PMID: 26637597 DOI: 10.1128/aem.03172-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/24/2015] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) serotype O145 is one of the major non-O157 serotypes associated with severe human disease. Here we examined the genetic diversity, population structure, virulence potential, and antimicrobial resistance profiles of environmental O145 strains recovered from a major produce production region in California. Multilocus sequence typing analyses revealed that sequence type 78 (ST-78), a common ST in clinical strains, was the predominant genotype among the environmental strains. Similarly, all California environmental strains belonged to H28, a common H serotype in clinical strains. Although most environmental strains carried an intact fliC gene, only one strain retained swimming motility. Diverse stx subtypes were identified, including stx1a, stx2a, stx2c, and stx2e. Although no correlation was detected between the stx genotype and Stx1 production, high Stx2 production was detected mainly in strains carrying stx2a only and was correlated positively with the cytotoxicity of Shiga toxin. All environmental strains were capable of producing enterohemolysin, whereas only 10 strains were positive for anaerobic hemolytic activity. Multidrug resistance appeared to be common, as nearly half of the tested O145 strains displayed resistance to at least two different classes of antibiotics. The core virulence determinants of enterohemorrhagic E. coli were conserved in the environmental STEC O145 strains; however, there was large variation in the expression of virulence traits among the strains that were highly related genotypically, implying a trend of clonal divergence. Several cattle isolates exhibited key virulence traits comparable to those of the STEC O145 outbreak strains, emphasizing the emergence of hypervirulent strains in agricultural environments.
Collapse
|