1
|
Dong L, Jia T, Yu Y, Wang Y. Updating a New Semi-nested PCR Primer Pair for the Specific Detection of GII Norovirus in Oysters. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:149-156. [PMID: 35099705 PMCID: PMC8802746 DOI: 10.1007/s12560-022-09511-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Oysters are major transmission vectors of noroviruses (NoVs) in the environment. Outbreaks of NoVs are often associated with the consumption of NoV-contaminated oysters. Laboratory confirmation of suspected oyster samples is a critical step in the surveillance and control of NoVs. Because of non-specific amplification, false-positive results are frequently obtained by semi-nested RT-PCR with the presently widely used primer set (G2SKF/G2SKR). Here, a novel universal PCR primer set N (NG2OF/NG2OR) specific for genogroup II (GII) NoVs was designed based on all GII NoV sequences available in public databases. Specific products were obtained with the primer set N when the NoV-positive oysters, spiked with each of five representative genotypes of GII NoVs (GII.17, GII.13, GII.4, GII.3, and GII.12), were subjected to analyzing. No products were detected with the primer set N for the NoV-negative oysters, while the primer set C gave various non-specific bands. Twenty-three out of 156 fresh oyster samples were NoV-positive with both the primer set N and the classic primer set, while eight were NoV-positive solely with the primer set N. Compared with the classic primer set, the newly designed primer set N had a higher detection rate and improved specificity for GII NoVs in oyster samples. These results show that the novel PCR primer pair is specific and applicable for the detection of GII NoVs in oysters.
Collapse
Affiliation(s)
- Lei Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Tianhui Jia
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yongxin Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.
| |
Collapse
|
2
|
Fitzpatrick AH, Rupnik A, O'Shea H, Crispie F, Keaveney S, Cotter P. High Throughput Sequencing for the Detection and Characterization of RNA Viruses. Front Microbiol 2021; 12:621719. [PMID: 33692767 PMCID: PMC7938315 DOI: 10.3389/fmicb.2021.621719] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
This review aims to assess and recommend approaches for targeted and agnostic High Throughput Sequencing of RNA viruses in a variety of sample matrices. HTS also referred to as deep sequencing, next generation sequencing and third generation sequencing; has much to offer to the field of environmental virology as its increased sequencing depth circumvents issues with cloning environmental isolates for Sanger sequencing. That said however, it is important to consider the challenges and biases that method choice can impart to sequencing results. Here, methodology choices from RNA extraction, reverse transcription to library preparation are compared based on their impact on the detection or characterization of RNA viruses.
Collapse
Affiliation(s)
- Amy H. Fitzpatrick
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
- Shellfish Microbiology, Marine Institute, Oranmore, Ireland
- Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Helen O'Shea
- Biological Sciences, Munster Technological University, Cork, Ireland
| | - Fiona Crispie
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | | | - Paul Cotter
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|
3
|
Interaction between norovirus and Histo-Blood Group Antigens: A key to understanding virus transmission and inactivation through treatments? Food Microbiol 2020; 92:103594. [PMID: 32950136 DOI: 10.1016/j.fm.2020.103594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Human noroviruses (HuNoVs) are a main cause of acute gastroenteritis worldwide. They are frequently involved in foodborne and waterborne outbreaks. Environmental transmission of the virus depends on two main factors: the ability of viral particles to remain infectious and their adhesion capacity onto different surfaces. Until recently, adhesion of viral particles to food matrices was mainly investigated by considering non-specific interactions (e.g. electrostatic, hydrophobic) and there was only limited information about infectious HuNoVs because of the absence of a reliable in vitro HuNoV cultivation system. Many HuNoV strains have now been described as having specific binding interactions with human Histo-Blood Group Antigens (HBGAs) and non-HBGA ligands found in food and the environment. Relevant approaches to the in vitro replication of HuNoVs were also proposed recently. On the basis of the available literature data, this review discusses the opportunities to use this new knowledge to obtain a better understanding of HuNoV transmission to human populations and better evaluate the hazard posed by HuNoVs in foodstuffs and the environment.
Collapse
|
4
|
Imamura S, Kanezashi H, Goshima T, Suto A, Ueki Y, Sugawara N, Ito H, Zou B, Kawasaki C, Okada T, Uema M, Noda M, Akimoto K. Effect of High Pressure Processing on a Wide Variety of Human Noroviruses Naturally Present in Aqua-Cultured Japanese Oysters. Foodborne Pathog Dis 2018; 15:621-626. [DOI: 10.1089/fpd.2018.2444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Saiki Imamura
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| | - Hiromi Kanezashi
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| | - Tomoko Goshima
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| | | | - You Ueki
- Miyagi Prefectural Institute of Public Health and Environment, Sendai-shi, Japan
| | - Naoko Sugawara
- Miyagi Prefectural Institute of Public Health and Environment, Sendai-shi, Japan
| | - Hiroshi Ito
- Miyagi Prefecture Fisheries Technology Institute, Ishinomaki, Japan
| | - Bizhen Zou
- Incorporated Foundation Tokyo Kenbikyo-in, Tokyo, Japan
| | | | | | - Masashi Uema
- National Institute of Health Sciences, Kawasaki City, Japan
| | - Mamoru Noda
- National Institute of Health Sciences, Kawasaki City, Japan
| | - Keiko Akimoto
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| |
Collapse
|
5
|
Noda M. Current Status of Norovirus Food Poisoning Related to Bivalve Mollusk and Its Control Measures. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2018; 58:12-25. [PMID: 28260728 DOI: 10.3358/shokueishi.58.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Sekse C, Holst-Jensen A, Dobrindt U, Johannessen GS, Li W, Spilsberg B, Shi J. High Throughput Sequencing for Detection of Foodborne Pathogens. Front Microbiol 2017; 8:2029. [PMID: 29104564 PMCID: PMC5655695 DOI: 10.3389/fmicb.2017.02029] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/04/2017] [Indexed: 12/23/2022] Open
Abstract
High-throughput sequencing (HTS) is becoming the state-of-the-art technology for typing of microbial isolates, especially in clinical samples. Yet, its application is still in its infancy for monitoring and outbreak investigations of foods. Here we review the published literature, covering not only bacterial but also viral and Eukaryote food pathogens, to assess the status and potential of HTS implementation to inform stakeholders, improve food safety and reduce outbreak impacts. The developments in sequencing technology and bioinformatics have outpaced the capacity to analyze and interpret the sequence data. The influence of sample processing, nucleic acid extraction and purification, harmonized protocols for generation and interpretation of data, and properly annotated and curated reference databases including non-pathogenic "natural" strains are other major obstacles to the realization of the full potential of HTS in analytical food surveillance, epidemiological and outbreak investigations, and in complementing preventive approaches for the control and management of foodborne pathogens. Despite significant obstacles, the achieved progress in capacity and broadening of the application range over the last decade is impressive and unprecedented, as illustrated with the chosen examples from the literature. Large consortia, often with broad international participation, are making coordinated efforts to cope with many of the mentioned obstacles. Further rapid progress can therefore be prospected for the next decade.
Collapse
Affiliation(s)
- Camilla Sekse
- Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Arne Holst-Jensen
- Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Gro S. Johannessen
- Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Weihua Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Bjørn Spilsberg
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, Oslo, Norway
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Application of next generation sequencing toward sensitive detection of enteric viruses isolated from celery samples as an example of produce. Int J Food Microbiol 2017; 261:73-81. [PMID: 28992517 DOI: 10.1016/j.ijfoodmicro.2017.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/15/2017] [Accepted: 07/30/2017] [Indexed: 02/06/2023]
Abstract
Next generation sequencing (NGS) holds promise as a single application for both detection and sequence identification of foodborne viruses; however, technical challenges remain due to anticipated low quantities of virus in contaminated food. In this study, with a focus on data analysis using several bioinformatics tools, we applied NGS toward amplification-independent detection and identification of norovirus at low copy (<103 copies) or within multiple strains from produce. Celery samples were inoculated with human norovirus (stool suspension) either as a single norovirus strain, a mixture of strains (GII.4 and GII.6), or a mixture of different species (hepatitis A virus and norovirus). Viral RNA isolation and recovery was confirmed by RT-qPCR, and optimized for library generation and sequencing without amplification using the Illumina MiSeq platform. Extracts containing either a single virus or a two-virus mixture were analyzed using two different analytic approaches to achieve virus detection and identification. First an overall assessment of viral genome coverage for samples varying in copy numbers (1.1×103 to 1.7×107) and genomic content (single or multiple strains in various ratios) was completed by reference-guided mapping. Not unexpectedly, this targeted approach to identification was successful in correctly mapping reads, thus identifying each virus contained in the inoculums even at low copy (estimated at 12 copies). For the second (metagenomic) approach, samples were treated as "unknowns" for data analyses using (i) a sequence-based alignment with a local database, (ii) an "in-house" k-mer tool, (iii) a commercially available metagenomics bioinformatic analysis platform cosmosID, and (iv) an open-source program Kraken. Of the four metagenomics tools applied in this study, only the local database alignment and in-house k-mer tool were successful in detecting norovirus (as well as HAV) at low copy (down to <103 copies) and within a mixture of virus strains or species. The results of this investigation provide support for continued investigation into the development and integration of these analytical tools for identification and detection of foodborne viruses.
Collapse
|
8
|
Imamura S, Kanezashi H, Goshima T, Haruna M, Okada T, Inagaki N, Uema M, Noda M, Akimoto K. Next-Generation Sequencing Analysis of the Diversity of Human Noroviruses in Japanese Oysters. Foodborne Pathog Dis 2017; 14:465-471. [DOI: 10.1089/fpd.2017.2289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Saiki Imamura
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| | - Hiromi Kanezashi
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| | - Tomoko Goshima
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| | - Mika Haruna
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| | | | - Nobuya Inagaki
- Food Analysis Technology Center SUNATEC, Yokkaichi, Japan
| | - Masashi Uema
- National Institute of Health Sciences, Tokyo, Japan
| | - Mamoru Noda
- National Institute of Health Sciences, Tokyo, Japan
| | - Keiko Akimoto
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries, Tokyo, Japan
| |
Collapse
|
9
|
Imamura S, Kanezashi H, Goshima T, Suto A, Ueki Y, Sugawara N, Ito H, Zou B, Uema M, Noda M, Akimoto K. Effect of High-Pressure Processing on Human Noroviruses in Laboratory-Contaminated Oysters by Bio-Accumulation. Foodborne Pathog Dis 2017; 14:518-523. [PMID: 28594572 DOI: 10.1089/fpd.2017.2294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The contamination of oysters with human noroviruses poses a human health risk, since oysters are often consumed raw. In this study, human norovirus genogroup II was allowed to bio-accumulate in oysters, and then the effect of high-pressure processing (HPP) on human noroviruses in oysters was determined through a polymerase chain reaction (PCR)-based method with enzymatic pretreatment to distinguish infectious noroviruses. As a result, oysters could be artificially contaminated to a detectable level of norovirus genome by the reverse transcription-PCR. Concentrations of norovirus genome in laboratory-contaminated oysters were log normally distributed, as determined by the real-time PCR, suggesting that artificial contamination by bio-accumulation was successful. In two independent HPP trials, a 1.87 log10 and 1.99 log10 reduction of norovirus GII.17 genome concentration was observed after HPP at 400 MPa for 5 min at 25°C. These data suggest that HPP is a promising process of inactivation of infectious human noroviruses in oysters. To our knowledge, this is the first report to investigate the effect of HPP on laboratory-contaminated noroviruses in oysters.
Collapse
Affiliation(s)
- Saiki Imamura
- 1 Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries , Tokyo, Japan
| | - Hiromi Kanezashi
- 1 Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries , Tokyo, Japan
| | - Tomoko Goshima
- 1 Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries , Tokyo, Japan
| | | | - You Ueki
- 3 Miyagi Prefectural Institute of Public Health and Environment , Miyaginoku, Sendai-shi, Miyagi, Japan
| | - Naoko Sugawara
- 3 Miyagi Prefectural Institute of Public Health and Environment , Miyaginoku, Sendai-shi, Miyagi, Japan
| | - Hiroshi Ito
- 4 Miyagi Prefecture Fisheries Technology Institute , Watanoha, Ishinomaki, Miyagi, Japan
| | - Bizhen Zou
- 5 Incorporated Foundation Tokyo Kenbikyo-in , Tokyo, Japan
| | - Masashi Uema
- 6 National Institute of Health Sciences , Kamiyoga, Setagaya, Tokyo, Japan
| | - Mamoru Noda
- 6 National Institute of Health Sciences , Kamiyoga, Setagaya, Tokyo, Japan
| | - Keiko Akimoto
- 1 Food Safety and Consumer Affairs Bureau, Ministry of Agriculture Forestry and Fisheries , Tokyo, Japan
| |
Collapse
|