1
|
Zhang Y, Zou G, Islam MS, Liu K, Xue S, Song Z, Ye Y, Zhou Y, Shi Y, Wei S, Zhou R, Chen H, Li J. Combine thermal processing with polyvalent phage LPEK22 to prevent the Escherichia coli and Salmonella enterica contamination in food. Food Res Int 2023; 165:112454. [PMID: 36869473 DOI: 10.1016/j.foodres.2022.112454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
Thermal processing is the most frequently used method to destruct bacteria in food processing. However, insufficient thermal processing may lead to the outbreak of foodborne illness. This study combined thermal processing with thermostable phage to prevent food contamination. The thermostable phages were screened which can retain activity at 70 °C for 1 h. Among them, the polyvalent phage LPEK22 was obtained to lyse Escherichia coli and Salmonella enterica, especially several multi-drug resistant bacteria. In milk (liquid food matrix), LPEK22 significantly reduced the E. coli by 5.00 ± 0.18 log10 CFU/mL and S. enterica by 4.20 ± 0.23 log10 CFU/mL after thermal processing at 63 °C for 30 min. For beef sausage (solid food matrix), LPEK22 significantly reduced the E. coli by 2.34 ± 0.17 log10 CFU/cm2 and S. enterica by 1.54 ± 0.13 log10 CFU/cm2 after thermal processing at 66 °C for 90 s. Genome analysis revealed that LPEK22 was a novel phage with a unique tail spike protein belonging to the family of Ackermannviridae. LPEK22 did not contain lysogenic, drug-resistant, and virulent genes that may compromise the safety of food application. These results determined that LPEK22, a novel polyvalent Ackermannviridae phage, could combine with thermal processing to prevent drug-resistant E. coli and S. enterica both in vitro and in foods.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Md Sharifull Islam
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kun Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Suqiang Xue
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yingwang Ye
- School of Food Science and Bioengineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yang Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanguo Shi
- Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen 518000, China
| | - Shaozhong Wei
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
2
|
Yue X, Sun J, Zhao R, Zhang J. A novel NMR immunosensor based on O-CMCS-targeted Gd probe for rapid detection of Salmonella anatum in milk. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Lianou DT, Skoulakis A, Michael CK, Katsarou EI, Chatzopoulos DC, Solomakos N, Tsilipounidaki K, Florou Z, Cripps PJ, Katsafadou AI, Vasileiou NGC, Dimoveli KS, Bourganou MV, Liagka DV, Papatsiros VG, Kontou PI, Mavrogianni VS, Caroprese M, Petinaki E, Fthenakis GC. Isolation of Listeria ivanovii from Bulk-Tank Milk of Sheep and Goat Farms-From Clinical Work to Bioinformatics Studies: Prevalence, Association with Milk Quality, Antibiotic Susceptibility, Predictors, Whole Genome Sequence and Phylogenetic Relationships. BIOLOGY 2022; 11:biology11060871. [PMID: 35741392 PMCID: PMC9220212 DOI: 10.3390/biology11060871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 02/03/2023]
Abstract
Simple Summary An extensive countrywide study in Greece revealed that isolation of the zoonotic pathogens Listeria monocytogenes and Listeria ivanovii from the milk produced in sheep or goat farms was infrequent: 1.2% of farms sampled. The presence of pigs on the farms, low average relative humidity in the environment and a high number of animals on the farms were found to be associated with the isolations. Detailed assessment of the L. ivanovii strains, for which there is a paucity of information worldwide, revealed that the isolated strains belonged to the L. ivanovii subsp. ivanovii branch. All strains of the branch appeared to be very similar, with the distance between them being small, which suggests that global spread of this clonal branch is a recent evolutionary event or that the branch is characterized by a slow evolutionary rate. Abstract A cross-sectional study was performed in 325 sheep and 119 goat dairy farms in Greece. Samples of bulk-tank milk were examined by standard microbiological techniques for Listeria spp. Listeria monocytogenes was isolated from one (0.3%) and Listeria ivanovii from three (0.9%) sheep farms. No associations between the isolation of L. monocytogenes or L. ivanovii and milk quality were found. No resistance to antibiotics was identified. Three variables emerged as significant predictors of isolation of the organism: the presence of pigs, low average relative humidity and a high number of ewes on the farm. The three L. ivanovii isolates were assessed in silico for identification of plasmids, prophages, antibiotic resistance genes, virulence factors, CRISPRs and CAS genes. Phylogenetic analysis using the core genome revealed that the three strains belonged to the L. ivanovii subsp. ivanovii branch and were especially close to the PAM 55 strain. All strains of the branch appeared to be very similar, with the distance between them being small.
Collapse
Affiliation(s)
- Daphne T. Lianou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.T.L.); (C.K.M.); (E.I.K.); (N.S.); (P.J.C.); (K.S.D.); (V.G.P.); (V.S.M.)
| | | | - Charalambia K. Michael
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.T.L.); (C.K.M.); (E.I.K.); (N.S.); (P.J.C.); (K.S.D.); (V.G.P.); (V.S.M.)
| | - Eleni I. Katsarou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.T.L.); (C.K.M.); (E.I.K.); (N.S.); (P.J.C.); (K.S.D.); (V.G.P.); (V.S.M.)
| | - Dimitris C. Chatzopoulos
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (D.C.C.); (A.I.K.); (M.V.B.)
| | - Nikolaos Solomakos
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.T.L.); (C.K.M.); (E.I.K.); (N.S.); (P.J.C.); (K.S.D.); (V.G.P.); (V.S.M.)
| | | | - Zoe Florou
- University Hospital of Larissa, 41110 Larissa, Greece; (K.T.); (Z.F.); (E.P.)
| | - Peter J. Cripps
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.T.L.); (C.K.M.); (E.I.K.); (N.S.); (P.J.C.); (K.S.D.); (V.G.P.); (V.S.M.)
| | - Angeliki I. Katsafadou
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (D.C.C.); (A.I.K.); (M.V.B.)
| | - Natalia G. C. Vasileiou
- Faculty of Animal Science, University of Thessaly, 41110 Larissa, Greece; (N.G.C.V.); (D.V.L.)
| | - Konstantina S. Dimoveli
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.T.L.); (C.K.M.); (E.I.K.); (N.S.); (P.J.C.); (K.S.D.); (V.G.P.); (V.S.M.)
| | - Maria V. Bourganou
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (D.C.C.); (A.I.K.); (M.V.B.)
| | - Dimitra V. Liagka
- Faculty of Animal Science, University of Thessaly, 41110 Larissa, Greece; (N.G.C.V.); (D.V.L.)
| | - Vasileios G. Papatsiros
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.T.L.); (C.K.M.); (E.I.K.); (N.S.); (P.J.C.); (K.S.D.); (V.G.P.); (V.S.M.)
| | | | - Vasia S. Mavrogianni
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.T.L.); (C.K.M.); (E.I.K.); (N.S.); (P.J.C.); (K.S.D.); (V.G.P.); (V.S.M.)
| | - Mariangela Caroprese
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy;
| | - Efthymia Petinaki
- University Hospital of Larissa, 41110 Larissa, Greece; (K.T.); (Z.F.); (E.P.)
| | - George C. Fthenakis
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.T.L.); (C.K.M.); (E.I.K.); (N.S.); (P.J.C.); (K.S.D.); (V.G.P.); (V.S.M.)
- Correspondence:
| |
Collapse
|
4
|
Imre K, Ban-Cucerzan A, Herman V, Sallam KI, Cristina RT, Abd-Elghany SM, Morar D, Popa SA, Imre M, Morar A. Occurrence, Pathogenic Potential and Antimicrobial Resistance of Escherichia coli Isolated from Raw Milk Cheese Commercialized in Banat Region, Romania. Antibiotics (Basel) 2022; 11:antibiotics11060721. [PMID: 35740128 PMCID: PMC9220297 DOI: 10.3390/antibiotics11060721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate the presence, pathogenic potential and antimicrobial susceptibility profile of Escherichia coli isolated from raw milk cheese, traditionally produced by farmers and marketed directly to the consumer in Banat region, Romania. A total of 81.1% (43/53) of the processed samples expressed positive results for E. coli, with a distribution of 83.8% (31/37), and 75.0% (12/16) in the cow- and sheep-milk-origin assortments, respectively. Overall, 69.8% (30/43) of the specimens had a contamination level ≤10 CFU/g. Molecular tests showed that, from the total number of E. coli isolates, 9.3% (4/43) harbored the stx2, and 2.3% (1/43), the stx1 virulence genes. The E. coli O157 (including H7) biovariety was identified in 7% (3/43) of the samples by the Vidas equipment. From the 27 antimicrobials tested with the Vitek2 automated system, the E. coli isolates displayed resistance to enrofloxacin (100%, 15 out of 15 tested isolates), ampicillin (39.5%, 17/43), norfloxacin (28.6%, 8/28), fosfomycin (25%, 7/28), amoxicillin/clavulanic acid (23.3%, 10/43), cefalexin (20%, 3/15), cefalotin (13.3%, 2/15), tetracycline (13.3%, 2/15), trimethoprim-sulfamethoxazole (9.3%, 4/43), piperacillin-tazobactam (7.1%, 2/28), cefotaxime (7.1%, 2/28), cefepime (7.1%, 2/28), ticarcillin/clavulanic acid (6.7%, 1/15), florfenicol (6.7%, 1/15), ceftazidime (3.6%, 1/28), and ertapenem (3.6%, 1/28). Ten (23.3%) strains were multidrug-resistant. The obtained preliminary results indicated hygienic–sanitary deficiencies throughout the cheese production process, and demonstrated that these products can harbor virulent and multidrug-resistant E. coli strains, which constitute a public health risk. However, future investigations, processing a higher number of samples, are still necessary to draw comprehensive conclusions.
Collapse
Affiliation(s)
- Kálmán Imre
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timişoara, 300645 Timișoara, Romania; (K.I.); (A.B.-C.); (V.H.); (R.T.C.); (D.M.); (S.A.P.); (M.I.)
| | - Alexandra Ban-Cucerzan
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timişoara, 300645 Timișoara, Romania; (K.I.); (A.B.-C.); (V.H.); (R.T.C.); (D.M.); (S.A.P.); (M.I.)
| | - Viorel Herman
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timişoara, 300645 Timișoara, Romania; (K.I.); (A.B.-C.); (V.H.); (R.T.C.); (D.M.); (S.A.P.); (M.I.)
| | - Khalid Ibrahim Sallam
- Faculty of Veterinary Medicine, Mansoura University, Mansoura 35511, Egypt; (K.I.S.); (S.M.A.-E.)
| | - Romeo Teodor Cristina
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timişoara, 300645 Timișoara, Romania; (K.I.); (A.B.-C.); (V.H.); (R.T.C.); (D.M.); (S.A.P.); (M.I.)
| | | | - Doru Morar
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timişoara, 300645 Timișoara, Romania; (K.I.); (A.B.-C.); (V.H.); (R.T.C.); (D.M.); (S.A.P.); (M.I.)
| | - Sebastian Alexandru Popa
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timişoara, 300645 Timișoara, Romania; (K.I.); (A.B.-C.); (V.H.); (R.T.C.); (D.M.); (S.A.P.); (M.I.)
| | - Mirela Imre
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timişoara, 300645 Timișoara, Romania; (K.I.); (A.B.-C.); (V.H.); (R.T.C.); (D.M.); (S.A.P.); (M.I.)
| | - Adriana Morar
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timişoara, 300645 Timișoara, Romania; (K.I.); (A.B.-C.); (V.H.); (R.T.C.); (D.M.); (S.A.P.); (M.I.)
- Correspondence:
| |
Collapse
|
5
|
Amagliani G, La Guardia ME, Dominici S, Brandi G, Omiccioli E. Salmonella Abortusovis: An Epidemiologically Relevant Pathogen. Curr Microbiol 2021; 79:3. [PMID: 34878615 DOI: 10.1007/s00284-021-02689-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 10/06/2021] [Indexed: 11/28/2022]
Abstract
The ovine pathogen Salmonella enterica serovar Abortusovis (SAO), a pathogen strictly adapted to ovine hosts, is endemic in several European and Asian countries, where it causes significant economic losses due to the high rates of abortion in infected flocks. In some countries (i.e. Switzerland and Croatia), re-emergence of infection by SAO occurred after decades during which the disease has not been reported. The introduction of (SAO) epidemic strains in new areas is difficult to control due to the asymptomatic behaviors in infected adult lambs, rams, and nonpregnant ewes. Culture-based diagnosis may provide false-negative results. Moreover, the retrospective identification of Salmonella infection in ewes is challenging as excretion of the causative agent is transient and the serum antibodies fall to low titres soon after the abortion. Therefore, regular monitoring of pathogen exposure, mainly through seroconversion assessment, is advisable to prevent disease introduction and spread in SAO-free areas, especially in case of animal export, and to reduce abortion risk.
Collapse
Affiliation(s)
- Giulia Amagliani
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, via S. Chiara, 27, 61029, Urbino, PU, Italy.
| | | | | | - Giorgio Brandi
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, via S. Chiara, 27, 61029, Urbino, PU, Italy
| | | |
Collapse
|
6
|
Yue X, Sun J, Yang T, Dong Q, Li T, Ding S, Liang X, Feng K, Gao X, Yang M, Huang G, Zhang J. Rapid detection of Salmonella in milk by a nuclear magnetic resonance biosensor based on the streptavidin-biotin system and O-carboxymethyl chitosan target gadolinium probe. J Dairy Sci 2021; 104:11486-11498. [PMID: 34454766 DOI: 10.3168/jds.2021-20716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
Rapid and sensitive detection of foodborne pathogens is of great importance for food safety. Here, a set of nuclear magnetic resonance (NMR) biosensors based on a O-carboxymethyl chitosan target gadolinium (Gd) probe was developed to quickly detect Salmonella in milk by combining NMR technology and bioimmunotechnology with membrane filtration technology. First, O-carboxymethyl chitosan (O-CMC) was biotinylated to prepare biotinylated O-carboxymethyl chitosan (biotin-O-CMC) through amide reaction, and biotinylated magnetic complexes (biotin-O-CMC-Gd) were obtained by using O-CMC, which has strong chelating adsorption on Gd. The target probe was obtained by combining biotin-O-CMC-Gd with the biotinylated antibody (biotin-antibody) via streptavidin (SA) by introducing the SA-biotin system. Then, Salmonella was captured by the target probe through antigen-antibody interaction. Finally, NMR was used to measure the longitudinal relaxation time (T1) of the filtrate collected by membrane filtration. This NMR biosensor with good specificity and high efficiency can detect Salmonella with the sensitivity of 1.8 × 103 cfu/mL within 2 h; in addition, it can realize the detection of complex samples because of its strong anti-interference capability and may open up a new method for rapid detection of Salmonella, which has a great application potential.
Collapse
Affiliation(s)
- Xianglin Yue
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Junru Sun
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Tan Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qiuling Dong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ting Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Shuangyan Ding
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xuehua Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Kaiwen Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoyu Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingqi Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jinsheng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
7
|
Uelze L, Borowiak M, Deneke C, Fischer J, Flieger A, Simon S, Szabó I, Tausch SH, Malorny B. Comparative genomics of Salmonella enterica subsp. diarizonae serovar 61:k:1,5,(7) reveals lineage-specific host adaptation of ST432. Microb Genom 2021; 7. [PMID: 34338625 PMCID: PMC8549363 DOI: 10.1099/mgen.0.000604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unlike most Salmonella enterica subsp. diarizonae, which are predominantly associated with cold-blooded animals such as reptiles, the serovar IIIb 61:k:1,5,(7) (termed SASd) is regarded as host-adapted to sheep. The bacterium is rarely associated with disease in humans but, nevertheless, SASd isolates are sporadically obtained from human clinical samples. It is unclear whether these transmissions are directly linked to sheep or whether transmissions may, for example, occur through other domestic animals also carrying SASd. For this reason, we utilized whole-genome sequencing to investigate a set of 119 diverse SASd isolates, including sheep-associated and human-associated isolates, as well as isolates obtained from other matrices. We discovered that serovar IIIb 61:k:1,5,(7) is composed of two distinct lineages defined by their sequence types ST432 and ST439. These two lineages are distinguished by a number of genetic features, as well as their prevalence and reservoir. ST432 appears to be the more prevalent sequence type, with the majority of isolates investigated in this study belonging to ST432. In contrast, only a small number of isolates were attributed to ST439. While ST432 isolates were of sheep, human or other origin, all ST439 isolates with source information available, were obtained from human clinical samples. Regarding their genetic features, lineage ST432 shows increased pseudogenization, harbours a virB/D4 plasmid that encodes a type IV secretion system (T4SS) and does not possess the iro gene cluster, which encodes a salmochelin siderophore for iron acquisition. These characteristics likely contribute to the ability of ST432 to persistently colonize the intestines of sheep. Furthermore, we found isolates of the lineage ST432 to be highly clonal, with little variation over the sampling period of almost 20 years. We conclude from the genomic comparisons that SASd underlies a microevolutionary process and that it is specifically lineage ST432 that should be considered as host-adapted to sheep.
Collapse
Affiliation(s)
- Laura Uelze
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Maria Borowiak
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Carlus Deneke
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Jennie Fischer
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Antje Flieger
- Unit for Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Robert Koch Institute (RKI), Burgstraße 37, 38855 Wernigerode, Germany
| | - Sandra Simon
- Unit for Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Robert Koch Institute (RKI), Burgstraße 37, 38855 Wernigerode, Germany
| | - István Szabó
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Simon H Tausch
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Burkhard Malorny
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
8
|
Amagliani G, Blasi G, Scuota S, Duranti A, Fisichella S, Gattuso A, Gianfranceschi MV, Schiavano GF, Brandi G, Pomilio F, Gabucci C, Di Lullo S, Savelli D, Tonucci F, Petruzzelli A. Detection and Virulence Characterization of Listeria monocytogenes Strains in Ready-to-Eat Products. Foodborne Pathog Dis 2021; 18:675-682. [PMID: 34042505 DOI: 10.1089/fpd.2020.2923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The public health risk posed by Listeria monocytogenes in ready-to-eat (RTE) foods depends on the effectiveness of its control at every stage of the production process and the strain involved. Analytical methods currently in use are limited to the identification/quantification of L. monocytogenes at the species level, without distinguishing virulent from hypovirulent strains. In these products, according to EU Regulation 2073/2005, L. monocytogenes is a mandatory criterion irrespective of strain virulence level. Indeed, this species encompasses a diversity of strains with various pathogenic potential, reflecting genetic heterogeneity of the species itself. Thus, the detection of specific L. monocytogenes virulence genes can be considered an important target in laboratory food analysis to assign different risk levels to foods contaminated by strains carrying different genes. In 2015-2016, a severe invasive listeriosis outbreak occurred in central Italy, leading to the intensification of routine surveillance and strain characterization for virulence genetic markers. A new multiplex real-time polymerase chain reaction targeting main virulence genes has been developed and validated against the enzyme-linked fluorescent assay (ELFA) culture-based method. Results of the improved surveillance program are now reported in this study.
Collapse
Affiliation(s)
- Giulia Amagliani
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Giuliana Blasi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Stefania Scuota
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Anna Duranti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Stefano Fisichella
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Antonietta Gattuso
- Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità (ISS), Roma, Italy
| | | | | | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Francesco Pomilio
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Claudia Gabucci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Stefania Di Lullo
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - David Savelli
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Franco Tonucci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Annalisa Petruzzelli
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| |
Collapse
|
9
|
Faccia M, Gambacorta G, Pasqualone A, Summo C, Caponio F. Quality Characteristics and Consumer Acceptance of High-Moisture Mozzarella Obtained from Heat-Treated Goat Milk. Foods 2021; 10:foods10040833. [PMID: 33920496 PMCID: PMC8068829 DOI: 10.3390/foods10040833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
High-moisture mozzarella is a pasta filata cheese manufactured from cow or buffalo milk that has spread all over the world. Its manufacturing from the milk of small ruminants (goat and sheep) has been recently proposed to innovate this ailing sector. Previously, a protocol was reported for making goat mozzarella from unpasteurized milk but, according to legislation, the microbiological safety of raw milk fresh cheeses is not guaranteed. In the present research, two new protocols were tested for producing mozzarella from pasteurized milk prepared by two different low-temperature long-time treatments (67 °C or 63 °C × 30 min). The obtained cheeses were subjected to physical–chemical and microbiological analyses and to consumer testing. The results showed that the heat treatments caused longer coagulation times than those reported in the literature, despite pre-acidification (at pH 5.93 or 6.35) having been performed to counterbalance the expected worsening of the coagulation aptitude. The obtained products showed differences in the chemical composition, texture, proteolysis, and lipolysis. Both pasteurization and pre-acidification played a role in determining these variations. Consumer testing indicated that mozzarella obtained from milk heated at the lower temperature and coagulated at a higher pH reached a good level of appreciation (62%).
Collapse
|
10
|
|
11
|
Zeinali T, Naseri K, Zandi N, Khosravi M. Screening of Salmonella enterica Serovars, Typhi, Typhimurium, and Enteritidis in Raw Milk and Dairy Products in South-Khorasan, Iran: Conventional versus Molecular Method. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666191010130113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background and Objective:
Food-borne Salmonellosis has been reported as the second
most common bacterial infection. Salmonella enterica subsp. enterica serotype enteritidis (S. Enteritidis)
and S. enterica subsp. enterica serotype typhimurium (S. Typhimurium) are the most common
serotypes worldwide as salmonellosis agents. Salmonella yyphi is the causative agent of typhoid fever
worldwide. The purpose of the present study was to determine the contamination rate of raw milk
and dairy products to Salmonella typhi, S. typhimurium and S. Enteritidis in South-Khorasan, Iran. It
is very important in food safety risk assessment and human health.
Methods:
A total of 260 raw milk and 181 dairy products were obtained from South-Khorasan, Iran.
Dairy samples were pre-enriched in buffered peptone water and enriched in Rappaport Vassiliadis
(RV). Raw milk was enriched in RV. Plating of the enriched samples was carried out on Xylose
Lysine Desoxycholate (XLD) agar and Brilliant Green agar (BGA). All of the enriched samples were
also tested by M-PCR for detection of S. typhi, S. typhimurium and S. Enteritidis.
Results:
Among the 441 tested samples only 4 samples were contaminated with Salmonella spp. in
culture method. PCR assay, didn’t find any positive sample regarding Salmonella spp. In chi-square
test, the difference of two methods of isolation was significant (P< 0.05).
Conclusions:
In conclusion, the results of the present study showed a good hygienic state of raw milk
and dairy products. Enrichment based PCR assay is more economical than time-consuming culture
method for Salmonella detection.
Collapse
Affiliation(s)
- Tayebeh Zeinali
- Social Determinants of Health Research Center, School of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Kobra Naseri
- Medical Toxicology and Drug Abuse Research Center, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Nasrin Zandi
- Research laboratory, Birjand University of Medical Sciences, Birjand, Iran
| | - Matin Khosravi
- Food and drug Organization, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
12
|
Jin L, Li T, Wu B, Yang T, Zou D, Liang X, Hu L, Huang G, Zhang J. Rapid detection of Salmonella in milk by nuclear magnetic resonance based on membrane filtration superparamagnetic nanobiosensor. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Friker B, Morach M, Püntener S, Cernela N, Horlbog J, Stephan R. Assessing the microbiological quality of raw goats' and ewes' tank milk samples in Switzerland. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2019.104609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Kaptchouang Tchatchouang CD, Fri J, De Santi M, Brandi G, Schiavano GF, Amagliani G, Ateba CN. Listeriosis Outbreak in South Africa: A Comparative Analysis with Previously Reported Cases Worldwide. Microorganisms 2020; 8:E135. [PMID: 31963542 PMCID: PMC7023107 DOI: 10.3390/microorganisms8010135] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 01/01/2023] Open
Abstract
Listeria species are Gram-positive, rod-shaped, facultative anaerobic bacteria, which do not produce endospores. The genus, Listeria, currently comprises 17 characterised species of which only two (L. monocytogenes and L. ivanovii) are known to be pathogenic to humans. Food products and related processing environments are commonly contaminated with pathogenic species. Outbreaks and sporadic cases of human infections resulted in considerable economic loss. South Africa witnessed the world's largest listeriosis outbreak, characterised by a progressive increase in cases of the disease from January 2017 to July 2018. Of the 1060 laboratory-confirmed cases of listeriosis reported by the National Institute of Communicable Diseases (NICD), 216 deaths were recorded. Epidemiological investigations indicated that ready-to-eat processed meat products from a food production facility contaminated with L. monocytogenes was responsible for the outbreak. Multilocus sequence typing (MLST) revealed that a large proportion (91%) of the isolates from patients were sequence type 6 (ST6). Recent studies revealed a recurrent occurrence of small outbreaks of listeriosis with more severe side-effects in humans. This review provides a comparative analysis of a recently reported and most severe outbreak of listeriosis in South Africa, with those previously encountered in other countries worldwide. The review focuses on the transmission of the pathogen, clinical symptoms of the disease and its pathogenicity. The review also focuses on the major outbreaks of listeriosis reported in different parts of the world, sources of contamination, morbidity, and mortality rates as well as cost implications. Based on data generated during the outbreak of the disease in South Africa, listeriosis was added to the South African list of mandatory notifiable medical conditions. Surveillance systems were strengthened in the South African food chain in order to assist in preventing and facilitating early detection of both sporadic cases and outbreaks of infections caused by these pathogens in humans.
Collapse
Affiliation(s)
| | - Justine Fri
- Department of Microbiology, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.)
| | - Mauro De Santi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, via S. Chiara 27, 61029 Urbino (PU), Italy; (M.D.S.); (G.B.); (G.A.)
- Department of Humanities, University of Urbino Carlo Bo, via Bramante 17, 61029 Urbino (PU), Italy;
| | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, via S. Chiara 27, 61029 Urbino (PU), Italy; (M.D.S.); (G.B.); (G.A.)
- Department of Humanities, University of Urbino Carlo Bo, via Bramante 17, 61029 Urbino (PU), Italy;
| | | | - Giulia Amagliani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, via S. Chiara 27, 61029 Urbino (PU), Italy; (M.D.S.); (G.B.); (G.A.)
| | - Collins Njie Ateba
- Department of Microbiology, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.)
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Mmabatho, Mafikeng 2735, South Africa
| |
Collapse
|
15
|
Uelze L, Borowiak M, Deneke C, Jacobs C, Szabó I, Tausch SH, Malorny B. First complete genome sequence and comparative analysis of Salmonella enterica subsp. diarizonae serovar 61:k:1,5,(7) indicates host adaptation traits to sheep. Gut Pathog 2019; 11:48. [PMID: 31636715 PMCID: PMC6791114 DOI: 10.1186/s13099-019-0330-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/27/2019] [Indexed: 11/10/2022] Open
Abstract
Background The Salmonella enterica subsp. diarizonae serovar 61:k:1,5,(7) (SASd) has been found to be host-adapted to sheep, with a high prevalence in sheep herds worldwide. Infections are usually sub-clinical, however the serovar has the potential to cause diarrhea, abortions and chronic proliferative rhinitis. Although occurrence and significance of SASd infections in sheep have been extensively studied, the genetic mechanism underlying this unusual host-adaptation have remained unknown, due to a lack of (a) available high-quality genome sequence(s). Results We utilized Nanopore and Illumina sequencing technologies to generate a de novo assembly of the 4.88-Mbp complete genome sequence of the SASd strain 16-SA00356, isolated from the organs of a deceased sheep in 2016. We annotated and analyzed the genome sequence with the aim to gain a deeper understanding of the genome characteristics associated with its pathogenicity and host adaptation to sheep. Overall, we found a number of interesting genomic features such as several prophage regions, a VirB4/D4 plasmid and novel genomic islands. By comparing the genome of 16-SA00356 to other S. enterica serovars we found that SASd features an increased number of pseudogenes as well as a high level of genomic rearrangements, both known indicators of host-adaptation. Conclusions With this sequence, we provide the first complete and closed genome sequence of a SASd strain. With this study, we provide an important basis for an understanding of the genetic mechanism that underlie pathogenicity and host adaptation of SASd to sheep.
Collapse
Affiliation(s)
- Laura Uelze
- 1Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Maria Borowiak
- 1Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Carlus Deneke
- 1Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Cécile Jacobs
- Landeslabor Schleswig-Holstein, Max-Eyth-Straße 5, 24537 Neumünster, Germany
| | - István Szabó
- 1Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Simon H Tausch
- 1Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Burkhard Malorny
- 1Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
16
|
Instrument-Free and Visual Detection of Salmonella Based on Magnetic Nanoparticles and an Antibody Probe Immunosensor. Int J Mol Sci 2019; 20:ijms20184645. [PMID: 31546808 PMCID: PMC6769488 DOI: 10.3390/ijms20184645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 11/17/2022] Open
Abstract
Salmonella, a common foodborne pathogen, causes many cases of foodborne illness and poses a threat to public health worldwide. Immunological detection systems can be combined with nanoparticles to develop sensitive and portable detection technologies for timely screening of Salmonella infections. Here, we developed an antibody-probe-based immuno-N-hydroxysuccinimide (NHS) bead (AIB) system to detect Salmonella. After adding the antibody probe, Salmonella accumulated in the samples on the surfaces of the immuno-NHS beads (INBs), forming a sandwich structure (INB–Salmonella–probes). We demonstrated the utility of our AIB diagnostic system for detecting Salmonella in water, milk, and eggs, with a sensitivity of 9 CFU mL−1 in less than 50 min. The AIB diagnostic system exhibits highly specific detection and no cross-reaction with other similar microbial strains. With no specialized equipment or technical requirements, the AIB diagnostic method can be used for visual, rapid, and point-of-care detection of Salmonella.
Collapse
|
17
|
Mladenović KG, Muruzović MŽ, Žugić Petrović T, Čomić LR. Escherichia coliidentification and isolation from traditional cheese produced in Southeastern Serbia. J Food Saf 2018. [DOI: 10.1111/jfs.12477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katarina G. Mladenović
- Department of Biology and Ecology, Faculty of Science; University of Kragujevac; Kragujevac Republic of Serbia
| | - Mirjana Ž. Muruzović
- Department of Biology and Ecology, Faculty of Science; University of Kragujevac; Kragujevac Republic of Serbia
| | | | - Ljiljana R. Čomić
- Department of Biology and Ecology, Faculty of Science; University of Kragujevac; Kragujevac Republic of Serbia
| |
Collapse
|
18
|
Carloni E, Rotundo L, Brandi G, Amagliani G. Rapid and simultaneous detection of Salmonella spp., Escherichia coli O157, and Listeria monocytogenes by magnetic capture hybridization and multiplex real-time PCR. Folia Microbiol (Praha) 2018; 63:735-742. [DOI: 10.1007/s12223-018-0617-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/15/2018] [Indexed: 11/25/2022]
|
19
|
Comparison of the Diatheva STEC FLUO with BAX System Kits for Detection of O157:H7 and Non-O157 Shiga Toxin-Producing Escherichia coli (STEC) in Ground Beef and Bean Sprout Samples Using Different Enrichment Protocols. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1269-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Zhou B, Liang T, Zhan Z, Liu R, Li F, Xu H. Rapid and simultaneous quantification of viable Escherichia coli O157:H7 and Salmonella spp. in milk through multiplex real-time PCR. J Dairy Sci 2017; 100:8804-8813. [PMID: 28865862 DOI: 10.3168/jds.2017-13362] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/17/2017] [Indexed: 11/19/2022]
Abstract
Escherichia coli O157:H7 and Salmonella spp. in milk are 2 common pathogens that cause foodborne diseases. An accurate, rapid, specific method has been developed for the simultaneous detection of viable E. coli O157:H7 and Salmonella spp. in milk. Two specific genes, namely, fliC from E. coli O157:H7 and invA from Salmonella spp., were selected to design primers and probes. A combined treatment containing sodium deoxycholate (SDO) and propidium monoazide (PMA) was applied to detect viable E. coli O157:H7 and Salmonella spp. only. Traditional culture methods and SDO-PMA-multiplex real-time (mRT) PCR assay were applied to determine the number of viable E. coli O157:H7 and Salmonella spp. in cell suspensions with different proportions of dead cells. These methods revealed consistent findings regarding the detected viable cells. The detection limit of the SDO-PMA-mRT-PCR assay reached 102 cfu/mL for Salmonella spp. and 102 cfu/mL for E. coli O157:H7 in milk. The detection limit of SDO-PMA-mRT-PCR for E. coli O157:H7 and Salmonella spp. in milk was significantly similar even in the presence of 106 cfu/mL of 2 nontarget bacteria. The proposed SDO-PMA-mRT-PCR assay is a potential approach for the accurate and sensitive detection of viable E. coli O157:H7 and Salmonella spp. in milk.
Collapse
Affiliation(s)
- Baoqing Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Taobo Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Zhongxu Zhan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Rui Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Fan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
21
|
Mladenović KG, Muruzović MŽ, Žugić Petrović T, Stefanović OD, Čomić LR. Isolation and identification of Enterobacteriaceae from traditional Serbian cheese and their physiological characteristics. J Food Saf 2017. [DOI: 10.1111/jfs.12387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katarina G. Mladenović
- Department of Biology and Ecology, Faculty of ScienceUniversity of Kragujevac, Radoja Domanovića 12Kragujevac34000 Republic of Serbia
| | - Mirjana Ž. Muruzović
- Department of Biology and Ecology, Faculty of ScienceUniversity of Kragujevac, Radoja Domanovića 12Kragujevac34000 Republic of Serbia
| | - Tanja Žugić Petrović
- College of Agriculture and Food Technology, Cirila i Metodija 1Prokuplje18400 Republic of Serbia
| | - Olgica D. Stefanović
- Department of Biology and Ecology, Faculty of ScienceUniversity of Kragujevac, Radoja Domanovića 12Kragujevac34000 Republic of Serbia
| | - Ljiljana R. Čomić
- Department of Biology and Ecology, Faculty of ScienceUniversity of Kragujevac, Radoja Domanovića 12Kragujevac34000 Republic of Serbia
| |
Collapse
|
22
|
Arenas NE, Abril DA, Valencia P, Khandige S, Soto CY, Moreno-Melo V. Screening food-borne and zoonotic pathogens associated with livestock practices in the Sumapaz region, Cundinamarca, Colombia. Trop Anim Health Prod 2017; 49:739-745. [PMID: 28283872 PMCID: PMC5375959 DOI: 10.1007/s11250-017-1251-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/15/2017] [Indexed: 12/27/2022]
Abstract
Hazardous practices regarding antibiotics misuse, unsanitary milking procedures, and the commercial sales of raw milk and unpasteurized dairy products are currently being practiced by livestock farmers in the Sumapaz region (Colombia). The purpose of this study was to screen for food-borne and zoonotic pathogens associated with local livestock practices. We evaluated 1098 cows from 46 livestock farms in the Sumapaz region that were selected by random. Of the total population of cattle, 962 animals (88%) were tested for bovine TB using a caudal-fold tuberculin test and 546 (50%) for brucellosis by a competitive ELISA. In the population tested, 23 cows were positive for Brucella sp. representing a 4.2% seroprevalence and no cases of bovine tuberculosis were found. In addition, food-borne contamination with Escherichia coli and Staphylococcus aureus was assessed together with antibiotic susceptibility for ten different antibiotics in milk samples from 16 livestock farms. We found that 12 of the farms (75%) were contaminated with these food-borne pathogens. Noteworthy, all of the isolated pathogenic strains were resistant to multiple antibiotics, primarily to oxytetracycline and erythromycin. Our findings suggest that livestock products could be a source of exposure to Brucella and multidrug-resistant E. coli and S. aureus strains as a result of unhygienic livestock practices in the Sumapaz region. Training in good farming practices is the key to improving safety in food production.
Collapse
Affiliation(s)
- Nelson E Arenas
- Faculty of Agricultural Sciences, Universidad de Cundinamarca, Diagonal 18 No. 20-29, Fusagasugá, Cundinamarca, 252211, Colombia
| | - Diego A Abril
- Faculty of Agricultural Sciences, Universidad de Cundinamarca, Diagonal 18 No. 20-29, Fusagasugá, Cundinamarca, 252211, Colombia
| | - Paola Valencia
- Faculty of Agricultural Sciences, Universidad de Cundinamarca, Diagonal 18 No. 20-29, Fusagasugá, Cundinamarca, 252211, Colombia
| | - Surabhi Khandige
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Carlos Yesid Soto
- Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30, No. 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Vilma Moreno-Melo
- Faculty of Agricultural Sciences, Universidad de Cundinamarca, Diagonal 18 No. 20-29, Fusagasugá, Cundinamarca, 252211, Colombia.
| |
Collapse
|