1
|
Soliani L, Rugna G, Prosperi A, Chiapponi C, Luppi A. Salmonella Infection in Pigs: Disease, Prevalence, and a Link between Swine and Human Health. Pathogens 2023; 12:1267. [PMID: 37887782 PMCID: PMC10610219 DOI: 10.3390/pathogens12101267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Salmonella is one of the most spread foodborne pathogens worldwide, and Salmonella infections in humans still represent a global health burden. The main source of Salmonella infections in humans is represented by contaminated animal-derived foodstuffs, with pork products being one of the most important players. Salmonella infection in swine is critical not only because it is one of the main causes of economic losses in the pork industry, but also because pigs can be infected by several Salmonella serovars, potentially contaminating the pig meat production chain and thus posing a significant threat to public health globally. As of now, in Europe and in the United States, swine-related Salmonella serovars, e.g., Salmonella Typhimurium and its monophasic variant Salmonella enterica subsp. enterica 1,4,[5],12:i:-, are also frequently associated with human salmonellosis cases. Moreover, multiple outbreaks have been reported in the last few decades which were triggered by the consumption of Salmonella-contaminated pig meat. Throughout the years, changes and evolution across the pork industry may have acted as triggers for new issues and obstacles hindering Salmonella control along the food chain. Gathered evidence reinforces the importance of coordinating control measures and harmonizing monitoring programs for the efficient control of Salmonella in swine. This is necessary in order to manage outbreaks of clinical disease in pigs and also to protect pork consumers by controlling Salmonella subclinical carriage and shedding. This review provides an update on Salmonella infection in pigs, with insights on Salmonella ecology, focusing mainly on Salmonella Choleraesuis, S. Typhimurium, and S. 1,4,[5],12:i:-, and their correlation to human salmonellosis cases. An update on surveillance methods for epidemiological purposes of Salmonella infection in pigs and humans, in a "One Health" approach, will also be reported.
Collapse
Affiliation(s)
- Laura Soliani
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna (IZSLER), 25124 Brescia, Italy; (G.R.); (A.P.); (C.C.); (A.L.)
| | | | | | | | | |
Collapse
|
2
|
Evangelista AG, Matté EHC, Corrêa JAF, Gonçalves FDR, Dos Santos JVG, Biauki GC, Milek MM, Costa LB, Luciano FB. Bioprotective potential of lactic acid bacteria for Salmonella biocontrol in vitro. Vet Res Commun 2023; 47:1357-1368. [PMID: 36823482 DOI: 10.1007/s11259-023-10083-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 02/11/2023] [Indexed: 02/25/2023]
Abstract
Lactic acid bacteria (LAB) are an important option for Salmonella control in animal production, resulting in lower antibiotic use. The objective of this research was to isolate LAB from meat products and from commercial probiotics sold as nutritional supplements for in vitro verification of their bioprotective potential. Eleven bacteria were identified as Pediococcus acidilactici, two as Lacticaseibacillus rhamnosus, one as Lacticaseibacillus paracasei paracasei, one as Limosilactobacillus fermentum, and one as a consortium of Lactobacillus delbrueckii bulgaricus and L. fermentum. All bacteria showed inhibitory activity against Salmonella, with emphasis on the inhibition of P. acidilactici PUCPR 011 against Salmonella Enteritidis 33SUSUP, S. Enteritidis 9SUSP, S. Enteritidis 56301, S. Enteritidis CRIFS 1016, Salmonella Typhimurium ATCC™ 14,028®, and Salmonella Gallinarum AL 1138, with inhibition halos of 7.3 ± 0.5 mm, 7.7 ± 1.0 mm, 9.0 ± 1.8 mm, 7.3 ± 0.5 mm, 7.7 ± 1.0 mm, and 7.3 ± 0.5, respectively. The isolates P. acidilactici PUCPR 011, P. acidilactici PUCPR 012, P. acidilactici PUCPR 014, L. fermentum PUCPR 005, L. paracasei paracasei PUCPR 013, and L. rhamnosus PUCPR 010 showed inhibition greater than 2 mm against at least 3 Salmonella and were used for encapsulation and in vitro digestion. The encapsulation efficiency ranged from 76.89 ± 1.54 to 116.48 ± 2.23%, and the population after 12 months of storage was from 5.31 ± 0.17 to 9.46 ± 0.09 log CFU/g. When simulating swine and chicken digestion, there was a large reduction in bacterial viability, stabilizing at concentrations close to 2.5 log CFU/mL after the analyses. The analyzed bacteria showed strong in vitro bioprotective potential; further analyses are required to determine in vivo effectiveness.
Collapse
Affiliation(s)
- Alberto Gonçalves Evangelista
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil.
| | - Eduardo Henrique Custódio Matté
- Undergraduate Program in Biotechnology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Jessica Audrey Feijó Corrêa
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Francieli Dalvana Ribeiro Gonçalves
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - João Vitor Garcia Dos Santos
- Undergraduate Program in Biotechnology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Gabrieli Camila Biauki
- Undergraduate Program in Biotechnology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Mônica Moura Milek
- Undergraduate Program in Biotechnology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Leandro Batista Costa
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Fernando Bittencourt Luciano
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil.
| |
Collapse
|
3
|
Evangelista AG, Corrêa JAF, Dos Santos JVG, Matté EHC, Milek MM, Biauki GC, Costa LB, Luciano FB. Cell-free supernatants produced by lactic acid bacteria reduce Salmonella population in vitro. MICROBIOLOGY-SGM 2021; 167. [PMID: 34738887 DOI: 10.1099/mic.0.001102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The genus Salmonella is closely associated with foodborne outbreaks and animal diseases, and reports of antimicrobial resistance in Salmonella species are frequent. Several alternatives have been developed to control this pathogen, such as cell-free supernatants (CFS). Our objective here was to evaluate the use of lactic acid bacteria (LAB) CFS against Salmonella in vitro. Seventeen strains of LAB were used to produce CFS, and their antimicrobial activity was screened towards six strains of Salmonella. In addition, CFS were also pH-neutralized and/or boiled. Those with the best results were lyophilized. MICs of lyophilized CFS were 11.25-22.5 g l-1. Freeze-dried CFS were also used to supplement swine and poultry feed (11.25 g kg-1) and in vitro simulated digestion of both species was performed, with Salmonella contamination of 5×106 and 2×105 c.f.u. g-1 of swine and poultry feed, respectively. In the antimicrobial screening, all acidic CFS were able to inhibit the growth of Salmonella. After pH neutralization, Lactobacillus acidophilus Llorente, Limosilactobacillus fermentum CCT 1629, Lactiplantibacillus plantarum PUCPR44, Limosilactobacillus reuteri BioGaia, Lacticaseibacillus rhamnosus ATCC 7469 and Pediococcus pentosaceus UM116 CFS were the only strains that partially maintained their antimicrobial activity and, therefore, were chosen for lyophilization. In the simulated swine digestion, Salmonella counts were reduced ≥1.78 log c.f.u. g-1 in the digesta containing either of the CFS. In the chicken simulation, a significant reduction was obtained with all CFS used (average reduction of 0.59±0.01 log c.f.u. ml-1). In general, the lyophilized CFS of L. fermentum CCT 1629, L. rhamnosus ATCC 7469 and L. acidophilus Llorente presented better antimicrobial activity. In conclusion, CFS show potential as feed additives to control Salmonella in animal production and may be an alternative to the use of antibiotics, minimizing problems related to antimicrobial resistance.
Collapse
Affiliation(s)
- Alberto Gonçalves Evangelista
- Graduate Program in Animal Science, School of Life Sciences, Pontificia Universidade Catolica do Parana, Paraná 80215-901, Brazil
| | - Jessica Audrey Feijó Corrêa
- Graduate Program in Animal Science, School of Life Sciences, Pontificia Universidade Catolica do Parana, Paraná 80215-901, Brazil
| | - João Vitor Garcia Dos Santos
- Undergraduate Program in Biotechnology, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Paraná 80215-901, Brazil
| | - Eduardo Henrique Custódio Matté
- Undergraduate Program in Biotechnology, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Paraná 80215-901, Brazil
| | - Mônica Moura Milek
- Undergraduate Program in Biotechnology, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Paraná 80215-901, Brazil
| | - Gabrieli Camila Biauki
- Undergraduate Program in Biotechnology, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Paraná 80215-901, Brazil
| | - Leandro Batista Costa
- Graduate Program in Animal Science, School of Life Sciences, Pontificia Universidade Catolica do Parana, Paraná 80215-901, Brazil
| | - Fernando Bittencourt Luciano
- Graduate Program in Animal Science, School of Life Sciences, Pontificia Universidade Catolica do Parana, Paraná 80215-901, Brazil
| |
Collapse
|
4
|
Olsen JV, Christensen T, Jensen JD. Pig Farmers' Perceptions of Economic Incentives to Control Salmonella Prevalence at Herd Level. Front Vet Sci 2021; 8:647697. [PMID: 33937374 PMCID: PMC8086553 DOI: 10.3389/fvets.2021.647697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 11/24/2022] Open
Abstract
This paper investigates how perceived costs and benefits of Salmonella control among Danish pig farmers affect the farmers' choice of action toward reducing the prevalence of Salmonella in their herds. Based on data from an online questionnaire involving 163 Danish pig farmers, we find a considerable uncertainty among pig farmers about the perceived effects of the Salmonella reducing actions. The results indicate large variations in the perceived costs of implementing different types of Salmonella reducing actions (management-, hygiene- and feed-related). For some cases, farmers associate net benefits and positive productivity effects with implementation of the actions while studies by the industry indicate net costs to the farmers. Differences among farmers support the idea of an outcome-based Salmonella penalty scheme but the large uncertainties about costs and effects of actions toward Salmonella control might hamper the effectiveness of such a penalty scheme as a regulatory instrument to affect farmer behavior.
Collapse
Affiliation(s)
- Jakob Vesterlund Olsen
- Department of Food and Resource Economics, University of Copenhagen, Copenhagen, Denmark
| | - Tove Christensen
- Department of Food and Resource Economics, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Dejgaard Jensen
- Department of Food and Resource Economics, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Riess LE, Hoelzer K. Implementation of Visual-Only Swine Inspection in the European Union: Challenges, Opportunities, and Lessons Learned. J Food Prot 2020; 83:1918-1928. [PMID: 32609817 DOI: 10.4315/jfp-20-157] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/27/2020] [Indexed: 12/23/2022]
Abstract
ABSTRACT Consumption of contaminated meat and poultry products is a major source of foodborne illness in the United States and globally. Meat inspection procedures, established more than 100 years ago to detect prevailing food safety issues of the time and largely harmonized around the world, do not effectively detect modern hazards and may inadvertently increase food safety risks by spreading contamination across carcasses. Visual-only inspection (VOI) is a significantly different, modernized meat inspection system that is data driven and minimizes physical manipulation of the carcass during inspection. It was developed based on scientific evidence and risk assessment and aims to better control current food safety hazards. In 2014, the European Union (EU) became the first supranational government in the world to require VOI for all swine herds slaughtered in member states that met certain epidemiologic and animal rearing conditions. Here, we review the implementation of this new inspection system with the goal of informing similar modernization efforts in other countries and for other commodities beyond pork. This article reports the results of a literature review and interviews conducted with nine experts in 2018 on the implementation of the EU's 2014 VOI regulation. Challenges, opportunities, and lessons learned about the implementation of the regulation are described for audiences interested in adapting inspection procedures to prevent and detect modern food safety hazards. Overall, implementation of VOI varies within and across member states, and among slaughterhouses of different sizes. This variation is due to disease risk patterns, supply chain conditions, and trade barriers. Before transitioning to a similar risk-based meat inspection system, other countries should consider the following: science-based research agendas to identify what food chain information best predicts herd health and foodborne hazards, regulatory system design that accurately reflects local hazards, and development of targeted VOI educational materials. HIGHLIGHTS
Collapse
Affiliation(s)
- L Elizabeth Riess
- The Pew Charitable Trusts, 901 East Street N.W., Washington, DC 20004, USA
| | - Karin Hoelzer
- The Pew Charitable Trusts, 901 East Street N.W., Washington, DC 20004, USA
| |
Collapse
|
6
|
Monte DF, Lincopan N, Fedorka-Cray PJ, Landgraf M. Current insights on high priority antibiotic-resistant Salmonella enterica in food and foodstuffs: a review. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|