1
|
Furlaneto MC, Furlaneto-Maia L. Antimicrobial nanoparticle-containing food packaging films for controlling Listeria spp.: An overview. Int J Food Microbiol 2025; 427:110959. [PMID: 39515137 DOI: 10.1016/j.ijfoodmicro.2024.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Bacteria of the genus Listeria are ubiquitous in nature and are found in various food products and food processing facilities. The species Listeria monocytogenes is a food-borne pathogen that causes listeriosis with a high fatality rate. For the prevention and control of listeriosis, the identification of effective antilisterial compounds is desirable. The number of investigations on nanoparticles (NPs) with antimicrobial activity has increased in recent years. In this context, green nanotechnology is a field of science that focuses on the synthesis of NPs through biological pathways using a wide range of microorganisms and plant extracts, which has led to the biofabrication of novel antimicrobial agents that have demonstrated remarkable potential against pathogenic bacteria. In this review, in vitro studies of the inhibitory action of antimicrobial NPs obtained by green biosynthesis, including silver, gold, zinc, zinc oxide, copper, palladium, and selenium NPs, on the growth of Listeria spp. were comprehensively summarized. This review mainly highlights antimicrobial NPs in biopolymer films against L. monocytogenes. Furthermore, studies on NPs in biopolymer-based functional food packaging films against L. monocytogenes are listed. Finally, safety considerations are indicated. This review provides an overview of the antilisterial activity of bio-based antimicrobial NPs and the potential of nanotechnology as an innovative technology for the development of food packaging films containing antimicrobial NPs to control Listeria spp.
Collapse
Affiliation(s)
- Marcia Cristina Furlaneto
- Paraná State University of Londrina, Department of Microbiology, Paraná, C.P. 6001, CEP 86051990, Brazil.
| | - Luciana Furlaneto-Maia
- Technological Federal University of Paraná, Paraná, Av. dos Pioneiros 3131, Londrina CEP 86036-370, Brazil.
| |
Collapse
|
2
|
Sabira O, Drisya N, Ajaykumar AP, Mathew A, Narayanan Jayaraj K, Binitha VS, Zeena KV, Roy KB, Janish PA, Sheena P, Viswanathan KP. From Ficus recemosa Leaf Galls to Therapeutic Silver Nanoparticles: Antibacterial and Anticancer Applications. Pharmaceutics 2024; 16:1025. [PMID: 39204370 PMCID: PMC11359757 DOI: 10.3390/pharmaceutics16081025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The synthesis of silver nanoparticles (AgNPs) using environmentally friendly methods has become increasingly important due to its sustainability and cost-effectiveness. This study investigates the green synthesis of AgNPs using gall extracts from the plant Ficus recemosa, known for its high phytochemical content. The formation of AgNPs was verified through multiple analytical techniques, including UV-Vis spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), zeta potential analysis, and dynamic light scattering (DLS). The UV-Vis spectroscopy results displayed a distinct surface plasmon resonance peak indicative of AgNP formation. FTIR analysis revealed specific interactions between silver ions and phytochemicals in the gall extract, while TEM images confirmed the nanoscale morphology and size of the synthesized particles. Zeta potential and DLS analyses provided insights into the stability and size distribution of the AgNPs, demonstrating good colloidal stability. Biological properties of the AgNPs were assessed through various assays. Antimicrobial activity was tested using the disc diffusion method against Escherichia coli and Staphylococcus aureus, showing significant inhibitory effects. The anticancer potential was evaluated using the trypan blue exclusion assay on Dalton's Lymphoma Ascites (DLA) cells, revealing considerable cytotoxicity. Additionally, antimitotic activity was studied in the dividing root cells of Allium cepa, where the AgNPs significantly inhibited cell division. This research highlights the effective use of F. recemosa gall extracts for the green synthesis of AgNPs, presenting an eco-friendly approach to producing nanoparticles with strong antimicrobial, anticancer, and antimitotic properties. The promising results suggest potential applications of these biogenic AgNPs in medical and agricultural sectors, paving the way for further exploration and utilization.
Collapse
Affiliation(s)
- Ovungal Sabira
- Division of Biomaterial Sciences, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi 679303, Kerala, India; (O.S.); (N.D.); (K.V.Z.); (P.A.J.)
| | - Nedumbayil Drisya
- Division of Biomaterial Sciences, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi 679303, Kerala, India; (O.S.); (N.D.); (K.V.Z.); (P.A.J.)
| | - Anthyalam Parambil Ajaykumar
- Division of Biomaterial Sciences, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi 679303, Kerala, India; (O.S.); (N.D.); (K.V.Z.); (P.A.J.)
| | - Asok Mathew
- Clinical Sciences Department, Centre for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| | - Kodangattil Narayanan Jayaraj
- Basic Sciences Department, Centre for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | | | - Koladath Vasu Zeena
- Division of Biomaterial Sciences, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi 679303, Kerala, India; (O.S.); (N.D.); (K.V.Z.); (P.A.J.)
| | - Kanakkassery Balan Roy
- Department of Chemistry, Sree Neelakanta Government Sanskrit College, Pattambi 679303, Kerala, India;
| | - Pandikkadan Ayyappan Janish
- Division of Biomaterial Sciences, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi 679303, Kerala, India; (O.S.); (N.D.); (K.V.Z.); (P.A.J.)
| | - Padannappurath Sheena
- Division of Biomaterial Sciences, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi 679303, Kerala, India; (O.S.); (N.D.); (K.V.Z.); (P.A.J.)
| | | |
Collapse
|
3
|
Anyaegbunam NJ, Mba IE, Ige AO, Ogunrinola TE, Emenike OK, Uwazie CK, Ujah PN, Oni AJ, Anyaegbunam ZKG, Olawade DB. Revisiting the smart metallic nanomaterials: advances in nanotechnology-based antimicrobials. World J Microbiol Biotechnol 2024; 40:102. [PMID: 38366174 DOI: 10.1007/s11274-024-03925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Despite significant advancements in diagnostics and treatments over the years, the problem of antimicrobial drug resistance remains a pressing issue in public health. The reduced effectiveness of existing antimicrobial drugs has prompted efforts to seek alternative treatments for microbial pathogens or develop new drug candidates. Interestingly, nanomaterials are currently gaining global attention as a possible next-generation antibiotics. Nanotechnology holds significant importance, particularly when addressing infections caused by multi-drug-resistant organisms. Alternatively, these biomaterials can also be combined with antibiotics and other potent biomaterials, providing excellent synergistic effects. Over the past two decades, nanoparticles have gained significant attention among research communities. Despite the complexity of some of their synthesis strategies and chemistry, unrelenting efforts have been recorded in synthesizing potent and highly effective nanomaterials using different approaches. With the ongoing advancements in nanotechnology, integrating it into medical procedures presents novel approaches for improving the standard of patient healthcare. Although the field of nanotechnology offers promises, much remains to be learned to overcome the several inherent issues limiting their full translation to clinics. Here, we comprehensively discussed nanotechnology-based materials, focusing exclusively on metallic nanomaterials and highlighting the advances in their synthesis, chemistry, and mechanisms of action against bacterial pathogens. Importantly, we delve into the current challenges and prospects associated with the technology.
Collapse
Affiliation(s)
- Ngozi J Anyaegbunam
- Measurement and Evaluation unit, Science Education Department, University of Nigeria, Nsukka, Nigeria
| | - Ifeanyi Elibe Mba
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka, Nsukka, Nigeria.
| | - Abimbola Olufunke Ige
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | | | | | | | - Patrick Ndum Ujah
- 7Department of Education Foundations, University of Nigeria Nsukka, Nsukka, Nigeria
| | - Ayodele John Oni
- Department of Industrial chemistry, Federal University of Technology, Akure, Nigeria
| | | | - David B Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, UK
| |
Collapse
|
4
|
Javed R, Ijaz S, Hameed H, Nazish M, Sharif MS, Afreen A, Alarjani KM, Elshikh MS, Mehboob S, Abdul Razak S, Waheed A, Ahmed R, Tariq M. Phytochemical-Mediated Biosynthesis of Silver Nanoparticles from Strobilanthes glutinosus: Exploring Biological Applications. MICROMACHINES 2023; 14:1372. [PMID: 37512683 PMCID: PMC10386440 DOI: 10.3390/mi14071372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
The application of green synthesis for silver nanoparticles in nanomedicine has experienced significant growth. Strobilanthes glutinosus, a plant primarily located in the Himalayas, remains largely unexplored. Considering the biomedical value of S. glutinosus, phytochemicals from this plant were used for the biosynthesis of silver nanoparticles. Silver nanoparticles were synthesized from aqueous extract of root and leaves of Strobilanthes glutinosus. The synthesized silver nanoparticles were characterized using UV-Vis spectrophotometry, Fourier-transform infrared spectroscopy, transmission electron microscopy, and X-ray diffraction. Total phenolic and flavonoid contents of plants were determined and compared with nanoparticles. The biomedical efficacy of plant extracts and silver nanoparticles was assessed using antioxidant and antibacterial assays. The UV-Vis spectra of leaf- and root-extract-mediated AgNPs showed characteristic peaks at 428 nm and 429 nm, respectively. TEM images revealed the polycrystalline and spherical shapes of leaf- and root-extract-mediated AgNPs with size ranges of 15-60 nm and 20-52 nm, respectively. FTIR findings shown the involvement of phytochemicals of root and leaf extracts in the reduction of silver ions into silver nanoparticles. The crystalline face-centered cubic structure of nanoparticles is depicted by the XRD spectra of leaf and root AgNPs. The plant has an ample amount of total phenolic content (TPC) and total flavonoid content (TFC), which enhance the scavenging activity of plant samples and their respective AgNPs. Leaf and root AgNPs have also shown good antibacterial activity, which may enhance the medicinal value of AgNPs.
Collapse
Affiliation(s)
- Rabia Javed
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
| | - Shumaila Ijaz
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hajra Hameed
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
| | - Moona Nazish
- Department of Botany, Rawalpindi Women University, Rawalpindi 46300, Pakistan
| | - Muhammad Shakeeb Sharif
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
| | - Afshan Afreen
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saadia Mehboob
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
| | - Sarah Abdul Razak
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Abdul Waheed
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Rashid Ahmed
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Muhammad Tariq
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
| |
Collapse
|
5
|
Raj R, Bhattu M, Verma M, Acevedo R, Duc ND, Singh J. Biogenic silver based nanostructures: Synthesis, mechanistic approach and biological applications. ENVIRONMENTAL RESEARCH 2023; 231:116045. [PMID: 37146935 DOI: 10.1016/j.envres.2023.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
The alarming impact of antibiotic resistance sparked the quest for complementary treatments to overcome the confrontation over resistant pathogens. Metallic nanoparticles, especially silver nanoparticles (Ag NPs) have gained a much attention because of their remarkable biological characteristics. Moreover, their medicinal properties can be enhanced by preparing the composites with other materials. This article delves a comprehensive review of biosynthesis route for Ag NPs and their nanocomposites (NCs) with in-depth mechanism, methods and favorable experimental parameters. Comprehensive biological features Ag NPs such as antibacterial, antiviral, antifungal have been examined, with a focus on their potential uses in biomedicine and diagnostics has also been discussed. Additionally, we have also explored the hitches and potential outcomes of biosynthesis of Ag NPs in biomedical filed.
Collapse
Affiliation(s)
- Riya Raj
- Department of Biochemistry, Bangalore University, Mysore Rd, Jnana Bharathi, Bengaluru, Karnataka, 560056, India
| | - Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Meenakshi Verma
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Roberto Acevedo
- San Sebastián University.Santiago, Campus Bellavista 7, Chile
| | - Nguyen D Duc
- Department of Environmental Energy Engineering, Kyonggi University, South Korea
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| |
Collapse
|
6
|
Guzmán-Altamirano MÁ, Rebollo-Plata B, Joaquín-Ramos ADJ, Gómez-Espinoza MG. Green synthesis and antimicrobial mechanism of nanoparticles: applications in agricultural and agrifood safety. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2727-2744. [PMID: 35941521 DOI: 10.1002/jsfa.12162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The growing demand for food and its safety are a challenge for agriculture and agrifood. This has led to the incorporation of alternatives such as organic agriculture, the use of biocontrollers, the development of transgenic plants resistant to pathogens and the incorporation of nanotechnology. In this sense, agrochemicals based on nanoparticles (NPs) have been developed. Recently, the green synthesis of NPs has grown rapidly and, for this reason, molecules, microorganisms, fungi and plants are used. Synthesis from plant extracts offers a broad spectrum and, despite the fact that NPs are usually dispersed in size and shape, extensive antimicrobial effectiveness has been demonstrated at nanomolar concentrations. It has been shown that the mechanism of action can be through the dissipation of the driving force of the protons, the alteration of cellular permeability, the formation of bonds with the thiol group of the proteins, the generation of reactive species of oxygen, and the hyperoxidation of DNA, RNA and even the cell membrane. To improve the efficiency of NPs, modifications have been made such as coating with other metals, the addition of antibiotics, detergents and surfactants, as well as the acidification of the solution. Consequently, NPs are considered as a promising method for achieving safety in the agricultural and agrifood area. However, it is necessary to investigate the side effects of NPs, when applied in agroecological systems, on the textural, nutriment and sensory properties of food, as well as the impact on human health. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Bernabe Rebollo-Plata
- Departamento de Ing. Electrónica, Instituto Tecnológico superior de Irapuato, Guanajuato, México
| | | | | |
Collapse
|
7
|
Green Synthesis of Anti-bacterial Nano Silver by Polysaccharide from Bletilla Striata. INORGANICS 2023. [DOI: 10.3390/inorganics11010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The silver nanoparticle is a good antibacterial material being used as a broad-spectrum fungicide, including against some multidrug-resistant strains. Compared with the normal chemical and physical preparation methods, green synthesis has attracted wide attention, because of the pharmaceutical activities of the natural product, mild reaction conditions, and environmentally friendly, etc. In this study, the synthesis of silver nanoparticles (Ag NPs) was prepared from Bletilla striata polysaccharide (BSP) and characterized by UV-vis spectroscopy and Dynamic Light Scattering (DLS). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated the morphology of Ag NPs was subspherical with an average size of 20–35 nm. Bletilla striata polysaccharide not only can be used as a natural reducing agent, but also has good repairing ability. Moreover, the antibacterial experimental results showed its great antimicrobial activity against Gram-positive bacteria (Staphylococcus aureus), Gram-negative bacteria (Escherichia coli) and Candida albicans.
Collapse
|
8
|
Tian Y, Luo J, Wang H, Zaki HEM, Yu S, Wang X, Ahmed T, Shahid MS, Yan C, Chen J, Li B. Bioinspired Green Synthesis of Silver Nanoparticles Using Three Plant Extracts and Their Antibacterial Activity against Rice Bacterial Leaf Blight Pathogen Xanthomonas oryzae pv. oryzae. PLANTS (BASEL, SWITZERLAND) 2022; 11:2892. [PMID: 36365347 PMCID: PMC9654092 DOI: 10.3390/plants11212892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 06/02/2023]
Abstract
Rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is responsible for a significant reduction in rice production. Due to the small impact on the environment, biogenic nanomaterials are regarded as a new type of antibacterial agent. In this research, three colloids of silver nanoparticles (AgNPs) were synthesized with different biological materials such as Arctium lappa fruit, Solanum melongena leaves, and Taraxacum mongolicum leaves, and called Al-AgNPs, Sm-AgNPs and Tm-AgNPs, respectively. The appearance of brown colloids and the UV-Visible spectroscopy analysis proved the successful synthesis of the three colloids of AgNPs. Moreover, FTIR and XRD analysis revealed the formation of AgNPs structure. The SEM and TEM analysis indicated that the average diameters of the three synthesized spherical AgNPs were 20.18 nm, 21.00 nm, and 40.08 nm, respectively. The three botanical AgNPs had the strongest bacteriostatic against Xoo strain C2 at 20 μg/mL with the inhibition zone of 16.5 mm, 14.5 mm, and 12.4 mm, while bacterial numbers in a liquid broth (measured by OD600) decreased by 72.10%, 68.19%, and 65.60%, respectively. Results showed that the three AgNPs could inhibit biofilm formation and swarming motility of Xoo. The ultrastructural observation showed that Al-AgNPs adhered to the surface of bacteria and broke the bacteria. Overall, the three synthetic AgNPs could be used to inhibit the pathogen Xoo of rice bacterial leaf blight.
Collapse
Affiliation(s)
- Ye Tian
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China
| | - Hui Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur 411, Oman
| | - Shanhong Yu
- Taizhou Academy of Agricultural Sciences, Taizhou 317000, China
| | - Xiao Wang
- Ningbo Jiangbei District Agricultural Technology Extension Service Station, Ningbo 315033, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-khod 123, Oman
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Devi N, Rani K, Kharb P, Kaushik P. Bio-Fabrication of Euryale ferox (Makhana) Leaf Silver Nanoparticles and Their Antibacterial, Antioxidant and Cytotoxic Potential. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202766. [PMID: 36297790 PMCID: PMC9612292 DOI: 10.3390/plants11202766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 05/14/2023]
Abstract
Bio-fabrication of green or plant extract-based silver nanoparticles has garnered much praise over the past decade as the methodology is environment-friendly, undemanding, non-pathogenic, and economical. In the current study, leaves of Eurale ferox (Makhana), considered as waste, were used for the bio-fabrication of silver nanoparticles (ELAgNPs). Various analytical techniques including UV−VIS spectroscopy, Field emission scanning electron microscopy equipped with an energy dispersive X-ray spectrometer (FESEM-EDX), Particle size analyzer (PSA), Fourier transform infra-red spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM) were used for their characterization. Their antibacterial efficacy was examined against gram positive bacterium, Bacillus subtilis and gram negative bacterium, Escherichia coli. The antioxidant potential of the ELAgNPs was compassed by 2, 2 diphenyl-1-picryl hydrazyl (DPPH; λmax = 517 nm) assay, H2O2 (λmax = 230 nm) and OH− (λmax = 520 nm)-based radical scavenging assays. The cytotoxicity was checked against the VERO cell line using 3-[4, 5-dimethyl thiazol-2-yl]-2, 5 diphenyl tetrazolium bromide (MTT) assay. A mean particle size of 26.51 ± 8.87 nm with a size distribution of 7.08−53.94 nm was obtained using HRTEM. The ELAgNPs exhibited dose-dependent antibacterial efficacy with a maximum zone of inhibition (ZOI) of 21.98 ± 0.59 mm against B. subtilis and of 16.46 ± 0.22 mm against E. coli at 500 ppm after 24 h of incubation. The median lethal concentration for the cytotoxicity analysis was found to be 9.54 ± 0.35 ppm, 120.9 ± 6.31 ppm, and 20.74 ± 0.63 ppm for ELAgNPs, commercial silver nanoparticles (CAgNPs), and silver nitrate (SN), respectively. The ordinary one-way ANOVA results exhibited a significant decrease in cell viability after 72 h of incubation at p < 0.05, α = 0.05. In conclusion, the ELAgNPs showed good antibacterial, radical scavenging and dose-dependent cytotoxicity against the VERO cells. Therefore, these could be used for biomedical applications. Phyto-constituents present in the plant not only act as reducing agents but also as stabilizing and coating agents, and the availability of a wide range of metabolites makes the green approach more promising.
Collapse
Affiliation(s)
- Nisha Devi
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
- Center for Bio-Nanotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Kanika Rani
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
- Center for Bio-Nanotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Pushpa Kharb
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
- Center for Bio-Nanotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
- Correspondence: (P.K.); (P.K.)
| | - Prashant Kaushik
- Kikugawa Research Station, Yokohama Ueki, Kikugawa 439-0031, Japan
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
- Correspondence: (P.K.); (P.K.)
| |
Collapse
|
10
|
Bold BE, Urnukhsaikhan E, Mishig-Ochir T. Biosynthesis of silver nanoparticles with antibacterial, antioxidant, anti-inflammatory properties and their burn wound healing efficacy. Front Chem 2022; 10:972534. [PMID: 36072703 PMCID: PMC9441807 DOI: 10.3389/fchem.2022.972534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
The current study aims to develop a novel burn wound ointment consisting of sheep's tail ointment loaded with AgNP. The AgNP in the ointment serves as an antibacterial, antioxidant and anti-inflammatory agent. The AgNP was developed via the biological method with the assistance of the medicinal plant Rhodiola rosea. The characterization of AgNP was assessed using UV-Vis spectroscopy, FTIR, Zeta Potential, XRD, PCCS, SEM, and EDX techniques. The formation of AgNP was confirmed by UV-Vis spectrum at the absorbance of ∼430 nm, and the biomolecules responsible for reducing and capping the AgNP were characterized by FTIR analysis. The stability of AgNP was determined with Zeta potential, which revealed a highly stable colloidal solution with a surface charge of -68.38 ± 3.4 mV. The synthesized AgNP had a face-centered cubic structure with a crystallite size of 23 nm and average grain size of 67.5 nm. The SEM image showed a fairly monodisperse 20 nm-sized spherical-shaped AgNP. The synthesized AgNP contained high purity of the silver, and a low concentration of AgNP inhibited both Gram-positive and Gram-negative bacteria. Moreover, the scavenging activity of AgNP was investigated using DPPH and H2O2 scavenging assay, and the results revealed a dose-dependent antioxidant activity with the highest activity at a concentration of 450 μg/ml. Finally, the burn wound healing effect was evaluated by applying the AgNP-loaded ointment to the wound site of BALB/c mice. The in-vivo studies confirmed that AgNP-loaded ointment reduced the wound size, decreased the epidermis layer, and lowered mast cell migration compared to untreated burn wounds. And the synthesized AgNP regulated both pro-inflammatory and anti-inflammatory gene expression, thereby promoting burn wound closure on BALB/c mice. The developed AgNP-loaded ointment has the potential to be applied in the biomedical field.
Collapse
Affiliation(s)
- Bum-Erdene Bold
- Laboratory of Molecular and Cellular Biophysics, Department of Biology, National University of Mongolia, Ulaanbaatar, Mongolia
- Graduate School of National University of Mongolia, Ulaanbaatar, Mongolia
| | - Enerelt Urnukhsaikhan
- Laboratory of Molecular and Cellular Biophysics, Department of Biology, National University of Mongolia, Ulaanbaatar, Mongolia
- Graduate School of National University of Mongolia, Ulaanbaatar, Mongolia
| | - Tsogbadrakh Mishig-Ochir
- Laboratory of Molecular and Cellular Biophysics, Department of Biology, National University of Mongolia, Ulaanbaatar, Mongolia
- Graduate School of National University of Mongolia, Ulaanbaatar, Mongolia
| |
Collapse
|
11
|
Biomimetic syntheses of silver nanoparticles using A. ferruginea bark extracts and tenable approaches for developing anti-infectives. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Torres-Limiñana J, Feregrino-Pérez AA, Vega-González M, Escobar-Alarcón L, Cervantes-Chávez JA, Esquivel K. Green Synthesis via Eucalyptus globulus L. Extract of Ag-TiO2 Catalyst: Antimicrobial Activity Evaluation toward Water Disinfection Process. NANOMATERIALS 2022; 12:nano12111944. [PMID: 35683797 PMCID: PMC9183104 DOI: 10.3390/nano12111944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023]
Abstract
The problem of water pollution by persistent substances and microorganisms requires solutions that materials such as silver-modified titanium dioxide can provide due to their excellent photocatalytic and antimicrobial properties. However, the synthesis methods conventionally used to obtain these materials involve toxic chemical reagents such as sodium borohydride (NaBH4). The search for alternative synthesis methods that use environmentally friendly substances, such as the biosynthesis method, was evaluated. Silver-titanium dioxide (Ag-TiO2) was synthesized by a Eucalyptus globulus L. extract as a reductive agent through sol-gel and microwave-assisted sol-gel processes. Four different solvents were tested to extract secondary metabolites to determine their roles in reducing silver nanoparticles. Titanium dioxide nanoparticles with sizes from 11 to 14 nm were obtained in the anatase phase, and no narrowing of the bandgap was observed (3.1–3.2 eV) for the Ag-TiO2 materials compared with the pure TiO2. Interestingly, the bacterial inhibition values were close to 100%, suggesting an effective antimicrobial mechanism related to the properties of silver. Finally, by the physicochemical characterization of the materials and their antimicrobial properties, it was possible to obtain a suitable biosynthesized Ag-TiO2 material as a green option for water disinfection that may be compared to the conventional methods.
Collapse
Affiliation(s)
- Jacqueline Torres-Limiñana
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Queretaro 76010, Mexico; (J.T.-L.); (A.A.F.-P.)
| | - Ana A. Feregrino-Pérez
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Queretaro 76010, Mexico; (J.T.-L.); (A.A.F.-P.)
| | - Marina Vega-González
- Centro de Geociencias, Universidad Nacional Autónoma de México, Campus Juriquilla. Blvd. Juriquilla, 3001, Santiago de Queretaro 76230, Mexico;
| | - Luis Escobar-Alarcón
- Departamento de Física, ININ, Carr. México-Toluca, La Marquesa, Ocoyoacac 52750, Mexico;
| | - José Antonio Cervantes-Chávez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Carr. Chichimequillas-Anillo Vial Fray Junípero Serra, Km 8, Santiago de Queretaro 76000, Mexico;
| | - Karen Esquivel
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Queretaro 76010, Mexico; (J.T.-L.); (A.A.F.-P.)
- Correspondence: ; Tel.: +52-442-192-1200 (ext. 65401)
| |
Collapse
|
13
|
Meenambigai K, Kokila R, Chandhirasekar K, Thendralmanikandan A, Kaliannan D, Ibrahim KS, Kumar S, Liu W, Balasubramanian B, Nareshkumar A. Green Synthesis of Selenium Nanoparticles Mediated by Nilgirianthus ciliates Leaf Extracts for Antimicrobial Activity on Foodborne Pathogenic Microbes and Pesticidal Activity Against Aedes aegypti with Molecular Docking. Biol Trace Elem Res 2022; 200:2948-2962. [PMID: 34431069 DOI: 10.1007/s12011-021-02868-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/03/2021] [Indexed: 11/27/2022]
Abstract
The present study deals with the synthesis of selenium nanoparticles (SeNPs) using Nilgirianthus ciliatus leaf extracts, characterized by UV-Vis spectrophotometer, XRD, FTIR, FE-SEM, HR-TEM, DLS, and zeta potential analysis. The antimicrobial activity against Staphylococcus aureus (MTCC96), Escherichia coli (MTCC443), and Salmonella typhi (MTCC98) showed the remarkable inhibitory effect at 25 µl/mL concentration level. Furthermore, the characterized SeNPs showed a great insecticidal activity against Aedes aegypti in the early larval stages with the median Lethal Concentration (LC50) of 0.92 mg/L. Histopathological observations of the SeNPs treated midgut and caeca regions of Ae. aegypti 4th instar larvae showed damaged epithelial layer and fragmented peritrophic membrane. In order to provide a mechanistic approach for further studies, molecular docking studies using Auto Dock Vina were performed with compounds of N. ciliatus within the active site of AeSCP2. Overall, the N. ciliates leaf-mediated biogenic SeNPs was promisingly evidenced to have potential larvicidal and food pathogenic bactericidal activity in an eco-friendly approach.
Collapse
Affiliation(s)
- Krishnan Meenambigai
- Department of Zoology, School of Life Sciences, Periyar University, Salem, 636011, India
| | - Ranganathan Kokila
- Department of Zoology, School of Life Sciences, Periyar University, Salem, 636011, India
| | | | | | - Durairaj Kaliannan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem, 636 011, India
| | - Kalibulla Syed Ibrahim
- PG and Research Department of Botany, PSG College of Arts & Science, Coimbatore, 641 014, Tamil Nadu, India
| | - Shobana Kumar
- Department of Zoology, Sri GVG Visalakshi College for Women, Udumalpet, Tamil Nadu, India
| | - Wenchao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | | | - Arjunan Nareshkumar
- Department of Zoology, School of Life Sciences, Periyar University, Salem, 636011, India.
| |
Collapse
|
14
|
Kumar D, Kumar P, Vikram K, Singh H. Fabrication and characterization of noble crystalline silver nanoparticles from Pimenta dioica leave extract and analysis of chemical constituents for larvicidal applications. Saudi J Biol Sci 2022; 29:1134-1146. [PMID: 35241964 PMCID: PMC8865016 DOI: 10.1016/j.sjbs.2021.09.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022] Open
Abstract
The current works report the bio-efficacy of Pimenta dioica leaf derived silver nanoparticles (Pd@AgNPs) and leaf extract obtained trough different solvents against the larvae of malaria, filarial and dengue vectors. Synthesis of silver nanoparticles (AgNPs) was done by adding 10 ml of P. dioica leaf extract into 90 ml of 1 mM silver nitrate solution, a slow colour change was observed depicting the formation of AgNPs. Further, Pd@AgNPs was confirmed through Ultraviolet–visible spectroscopy which exhibited characteristic absorption peak at 422 nm wavelength. X-ray diffraction and selected area electron diffraction analysis confirmed monodispersed and crystalline nature of Pd@AgNPs with 32 nm an average size. Scanning electron microscopy and transmission electron microscopy showed the most of Pd@AgNPs were spherical and triangular in shape and energy-dispersive X-ray spectroscopy revealed silver elemental nature of nanoparticles. Zeta potential of Pd@AgNPs is highly negative which confirmed its stable nature. Pd@AgNPs showed prominent absorption peaks at 1015, 1047, 1243, 1634, 2347, 2373, 2697 and 3840 cm−1 which are corresponding to following compounds polysaccharides, carboxylic acids, water, alcohols, esters, ethers, amines, amides and phenol, respectively as reported by Fourier-transform infrared spectroscopy analysis. Gas chromatography–mass spectrometry and Liquid chromatography–mass spectrometry analysis revealed 39 and 70 compounds, respectively, which might be contributed for bio-reduction, capping, stabilization and larvicidal behavior of AgNPs. A comparable lethality (LC50 and LC90) was observed in case of Pd@AgNPs over leaf extract alone. The potential larvicidal activity of Pd@AgNPs was observed against the larvae of Aedes aegypti,(LC50, 2.605; LC90, 5.084 ppm) Anopheles stephensi (LC50, 3.269; LC90, 7.790 ppm) and Culex quinquefasciatus (LC50, 5.373; LC90, 14.738 ppm without affecting non-targeted organism, Mesocyclops thermocyclopoides after 72 hr of exposure. This study entails green chemistry behind synthesis of AgNPs which offers effective technique for mosquito control and other therapeutic applications.
Collapse
Affiliation(s)
- Dinesh Kumar
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi 110077, India
| | - Pawan Kumar
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi 110077, India
| | - Kumar Vikram
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi 110077, India
| | - Himmat Singh
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi 110077, India
| |
Collapse
|
15
|
Systemic Evaluation of Mechanism of Cytotoxicity in Human Colon Cancer HCT-116 Cells of Silver Nanoparticles Synthesized Using Marine Algae Ulva lactuca Extract. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02133-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Trak D, Arslan Y. Synthesis of silver nanoparticles using dried black mulberry ( Morus nigra L.) fruit extract and their antibacterial and effective dye degradation activities. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1980038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Diğdem Trak
- Chemistry Department, Faculty of Arts & Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Yasin Arslan
- Nanoscience and Nanotechnology Department, Faculty of Arts & Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
- Faculty of Science, Karabük University, Karabük, Turkey
| |
Collapse
|
17
|
Selvakesavan RK, Franklin G. Prospective Application of Nanoparticles Green Synthesized Using Medicinal Plant Extracts as Novel Nanomedicines. Nanotechnol Sci Appl 2021; 14:179-195. [PMID: 34588770 PMCID: PMC8476107 DOI: 10.2147/nsa.s333467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
The use of medicinal plants in green synthesis of metal nanoparticles is increasing day by day. A simple search for the keywords "green synthesis" and "nanoparticles" yields more than 33,000 articles in Scopus. As of August 10, 2021, more than 4000 articles have been published in 2021 alone. Besides demonstrating the ease and environmental-friendly route of synthesizing nanomaterials, many studies report the superior pharmacological properties of green synthesized nanoparticles compared to those synthesized by other methods. This is probably due to the fact that bioactive molecules are entrapped on the surface of these nanoparticles. On the other hand, recent studies have confirmed the nano-dimension and biocompatibility of metal ash (Bhasma) preparations, which are commonly macerated with biological products and administered for the treatment of various diseases in Indian medicine since ancient times. This perspective article argues for the prospective medical application of green nanoparticles in the light of Bhasma.
Collapse
Affiliation(s)
| | - Gregory Franklin
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
18
|
Nene A, Galluzzi M, Hongrong L, Somani P, Ramakrishna S, Yu XF. Synthetic preparations and atomic scale engineering of silver nanoparticles for biomedical applications. NANOSCALE 2021; 13:13923-13942. [PMID: 34477675 DOI: 10.1039/d1nr01851e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to their peculiar oxidative effect, silver cations (Ag+) are well known for their antimicrobial properties and explored as therapeutic agents for biomedical applications. Size control with improved dispersion and stability are the key factors of Ag NPs (silver nanoparticles) to be used in biomedical applications. Silver based nano-materials are highly efficient due to their biological, chemical and physical properties in comparison with bulk silver. Atomic scale fabrication is achieved by rearranging the internal components of a material, in turn, influencing the mechanical, electrical, magnetic, thermal and chemical properties. For instance, size and shape have a strong impact on the optical, thermal and catalytic properties of Ag NPs. Such properties can be tuned by controlling the surface/volume ratio of Ag nanostructures with a small size (ideally <100 nm), in turn showing peculiar biological activity different from that of bulk silver. Silver nanomaterials such as nanoparticles, thin films and nanorods can be synthesized by various physical, chemical and biological methods whose most recent implementations will be described in this review. By controlling the structure-functionality relationship, silver based nano-materials have high potential for commercialization in biomedical applications. Antimicrobial, antifungal, antiviral, and anti-inflammatory Ag NPs can be applied in several fields such as pharmaceutics, sensors, coatings, cosmetics, wound healing, bio-labelling agents, antiviral drugs, and packaging.
Collapse
Affiliation(s)
- Ajinkya Nene
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | | | | | | | | | | |
Collapse
|
19
|
Kaplan Ö, Gökşen Tosun N, Özgür A, Erden Tayhan S, Bilgin S, Türkekul İ, Gökce İ. Microwave-assisted green synthesis of silver nanoparticles using crude extracts of Boletus edulis and Coriolus versicolor: Characterization, anticancer, antimicrobial and wound healing activities. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Khan AA, Alanazi AM, Alsaif N, Wani TA, Bhat MA. Pomegranate peel induced biogenic synthesis of silver nanoparticles and their multifaceted potential against intracellular pathogen and cancer. Saudi J Biol Sci 2021; 28:4191-4200. [PMID: 34354399 PMCID: PMC8325005 DOI: 10.1016/j.sjbs.2021.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
In the field of nano-biotechnology, silver nanoparticles (AgNPs) share a status of high repute owing to their remarkable medicinal values. Biological synthesis of environment-friendly AgNPs using plant extracts has emerged as the beneficial alternative approach to chemical synthesis. In the current study, we have synthesized biogenic silver nanoparticles (PG-AgNPs) using the peel extract of Punica granatum as a reducing and stabilizing agent. The as-synthesized PG-AgNPs were characterized and evaluated for their antibacterial and anticancer potential. UV-Visible spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the formation of biogenic PG-AgNPs. The antibacterial potential was assessed against the biofilm of Listeria monocytogenes. The PG-AgNPs were efficacious against sessile bacteria and their biofilm as well. The as-synthesized nanoparticles at sub-MIC values showed dose-dependent inhibition of biofilm formation. Corroborating results were observed under crystal violet assay, Congo red staining, Confocal microscopy and SEM analysis. The anticancer ability of the nanoparticles was evaluated against MDA-MB-231 metastatic breast cancer cells. As evident from the MTT results, PG-AgNPs significantly reduced the cell viability in a dose-dependent manner. Exposure of MDA-MB-231 cells led to the accumulation of reactive oxygen species (ROS). Morphological changes and DNA fragmentation showed the strong positive effect of PG-AgNPs on the induction of apoptosis. Collectively, the as-synthesized PG-AgNPs evolved with synergistically emerged attributes that were effective against L. monocytogenes and also inhibited its biofilm formation; moreover, the system displayed lower cytotoxic manifestation towards mammalian cells. In addition, the PG-AgNPs embodies intriguing anticancer potential against metastatic breast cancer cells.
Collapse
Affiliation(s)
- Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nawaf Alsaif
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tanveer A. Wani
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mashooq A. Bhat
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
21
|
Wahab S, Khan T, Adil M, Khan A. Mechanistic aspects of plant-based silver nanoparticles against multi-drug resistant bacteria. Heliyon 2021; 7:e07448. [PMID: 34286126 PMCID: PMC8273360 DOI: 10.1016/j.heliyon.2021.e07448] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/05/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
Resistance among pathogenic bacteria to the existing antibiotics is one of the most alarming problems of the modern world. Alongwith reducing the use of antibiotics, and antibiotic stewardship, an alternative to antibiotics is much needed in the current scenario to combact infectious diseases. One alternative is to produce nanomaterials, especially, silver nanoparticles (AgNPs) against antibiotic-resistant bacteria. AgNPs are the most vital and fascinating nanoparticles because of their unique structural and functional properties and application against pathogenic bacteria. However, the synthesis of AgNPs remains a problem because of the chemicals and energy requirements and the byproducts of the reactions. Concerns have been raised about using chemically and physically synthesized nanoparticles because of their potential risks to the human body, animals, and environment. Green synthesis of these nanoparticles is a better alternative to physical and chemical approaches. Plant-based synthesis in turn is a method which can provide AgNPs that are cost-effective and eco-friendly as well as biocompatible. The specific features of size, morphology and shape of plant-based AgNPs give them the potency to fight multi-drug resistant bacteria. A detailed look into mechanistic aspects of the action of AgNPs against resistant bacteria with a focus on characteristic properties of AgNPs is required. This review discusses in detail these aspects and the potential of plant-based AgNPs as a solution to antibiotic resistance.
Collapse
Affiliation(s)
- Shahid Wahab
- Department of Biotechnology, University of Malakand, Chakdara Dir Lower, Pakistan
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara Dir Lower, Pakistan
| | - Muhammad Adil
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Centre for Nanoscience and Technology (NCNST), China
| | - Ajmal Khan
- Department of Biology, University of North Carolina at Greensboro, NC, United States
| |
Collapse
|
22
|
Jain N, Jain P, Rajput D, Patil UK. Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity. MICRO AND NANO SYSTEMS LETTERS 2021. [PMCID: PMC8091155 DOI: 10.1186/s40486-021-00131-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanotechnology holds an emerging domain of medical science as it can be utilized virtually in all areas. Phyto-constituents are valuable and encouraging candidates for synthesizing green silver nanoparticles (AgNPs) which possess great potentials toward chronic diseases. This review gives an overview of the Green approach of AgNPs synthesis and its characterization. The present review further explores the potentials of Phyto-based AgNPs toward anticancer and antiviral activity including its probable mechanism of action. Green synthesized AgNPs prepared by numerous medicinal plants extract are critically reviewed for cancer and viral infection. Thus, this article mainly highlights green synthesized Phyto-based AgNPs with their potential applications for cancer and viral infection including mechanism of action and therapeutic future prospective in a single window. ![]()
Collapse
|
23
|
Adewale OB, Anadozie SO, Potts-Johnson SS, Onwuelu JO, Obafemi TO, Osukoya OA, Fadaka AO, Davids H, Roux S. Investigation of bioactive compounds in Crassocephalum rubens leaf and in vitro anticancer activity of its biosynthesized gold nanoparticles. ACTA ACUST UNITED AC 2020; 28:e00560. [PMID: 33299809 PMCID: PMC7704417 DOI: 10.1016/j.btre.2020.e00560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/29/2020] [Accepted: 11/14/2020] [Indexed: 12/24/2022]
Abstract
GC–MS analysis of Crassocephalum rubens extracts were investigated. Gold nanoparticles (AuNPs) were synthesized using aqueous extract of Crassocephalum rubens (AECR). DPPH radical scavenging activity of AECR was similar to that of AECR-AuNPs. AECR-AuNPs are potential anticancer agents against MCF-7 and Caco-2 cell lines.
The development of cancer therapies has become difficult due to high metastasis, and lack of tissue selectivity, which in most cases affects normal cells. Demand for anticancer therapy is therefore increasing on daily basis. Gold nanoparticles (AuNPs) have many applications in biomedical field. Biological synthesis of AuNPs using aqueous extract of Crassocephalum rubens (AECR) was designed to investigate the in vitro anticancer potential. The synthesized AuNPs were characterized by UV–vis spectroscopy, high-resolution transmission electron microscopy, and Fourier transform infrared spectroscopy. The characterization results showed the formation of green AuNPs of wavelength 538 nm, and mostly spherical AuNPs with 20 ± 5 nm size. Significant anticancer activity of the AECR-AuNPs on MCF-7 and Caco-2 cells was noted at higher concentrations (125 and 250 μg/mL) during 24 and at all concentrations tested during 48 h. It can therefore be concluded that AECR leaves can mediate stable AuNPs with anticancer properties.
Collapse
Affiliation(s)
- Olusola B Adewale
- Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti, 360001, Nigeria.,Department of Physiology, Nelson Mandela University, P. O. Box 77000, Port Elizabeth, 6031, South Africa
| | - Scholastica O Anadozie
- Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti, 360001, Nigeria.,Department of Physiology, Nelson Mandela University, P. O. Box 77000, Port Elizabeth, 6031, South Africa
| | - Sotonye S Potts-Johnson
- Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti, 360001, Nigeria
| | - Joan O Onwuelu
- Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti, 360001, Nigeria
| | - Tajudeen O Obafemi
- Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti, 360001, Nigeria
| | - Olukemi A Osukoya
- Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti, 360001, Nigeria
| | - Adewale O Fadaka
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Hajierah Davids
- Department of Physiology, Nelson Mandela University, P. O. Box 77000, Port Elizabeth, 6031, South Africa
| | - Saartjie Roux
- Department of Physiology, Nelson Mandela University, P. O. Box 77000, Port Elizabeth, 6031, South Africa
| |
Collapse
|
24
|
Hafeez M, Zeb M, Khan A, Akram B, Abdin ZU, Haq S, Zaheer M, Ali S. Populus ciliata mediated synthesis of silver nanoparticles and their antibacterial activity. Microsc Res Tech 2020; 84:480-488. [PMID: 32979017 DOI: 10.1002/jemt.23604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 01/08/2023]
Abstract
Design and synthesis of bactericidal and fungicidal agents is very important to protect human beings from different diseases. Silver nanoparticles (AgNPs) possess good bactericidal properties. Synthesis of these nanoparticles (NPs) via green route is cost-effective and environmentally harmonious as compared to the chemical and physical approaches. In this work, AgNPs were synthesized through green synthesis method using Populus ciliata leaf extract. The synthesized AgNPs were characterized by x-ray diffraction (XRD), ultraviolet-visible (UV-Vis) spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive x-ray (EDX) techniques. The XRD pattern depicted the characteristic Bragg's peaks of (111), (200), (220), and (311) planes which are the features of face centered cubic (FCC) geometry of the synthesized AgNPs. TEM micrographs revealed the spherical shaped particles having average size of 4 nm. The AgNPs showed inhibitory effects against selected gram positive (Staphylococcus epidermidis and Streptococcus pyogenes) and gram negative bacteria (Klebsiella pneumoniae, Serratia marcescens, and Pseudomonas pseudoalcaligenes). The maximum zone of inhibition (26 mm) was observed for gram negative bacterium (Serratia marcescens) when 25 mg/ml solution of AgNPs was used and for similar concentration of these NPs, the maximum zone of inhibition (25 mm) was observed against gram positive bacteria (S. pyogenes). The results indicated good bactericidal potential of the synthesized AgNPs. RESEARCH HIGHLIGHTS: Populus ciliata leaf extract mediated synthesis of AgNPs. Transmission electron microscopy analysis revealed very small size of the synthesized AgNPs (4 nm). The synthesized AgNPs were found very effective against various bacterial pathogens.
Collapse
Affiliation(s)
- Muhammad Hafeez
- Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir, Pakistan
| | - Maryum Zeb
- Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir, Pakistan
| | - Abdullah Khan
- Department of Environmental Sciences, QAU, Islamabad, Pakistan
| | - Bilal Akram
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Zain-Ul Abdin
- Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir, Pakistan
| | - Sirajul Haq
- Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir, Pakistan
| | - Muhammad Zaheer
- Department of Chemistry and Chemical Engineering, LUMS, Lahore, Pakistan
| | - Shaukat Ali
- Applied Entomology and Medical Toxicology Laboratory, Government College University, Lahore, Pakistan
| |
Collapse
|
25
|
Al-Shabib NA, Husain FM, Nadeem M, Khan MS, Al-Qurainy F, Alyousef AA, Arshad M, Khan A, Khan JM, Alam P, Albalawi T, Shahzad SA. Bio-inspired facile fabrication of silver nanoparticles from in vitro grown shoots of Tamarix nilotica: explication of its potential in impeding growth and biofilms of Listeria monocytogenes and assessment of wound healing ability. RSC Adv 2020; 10:30139-30149. [PMID: 35518236 PMCID: PMC9056294 DOI: 10.1039/d0ra04587j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/23/2020] [Indexed: 11/21/2022] Open
Abstract
Novel, safe, and effective antilisterial agents are required in order to prevent Listeria monocytogenes infections and maintain food safety. This study synthesized silver nanoparticles (AgNPs) from the shoot extract of in vitro-grown Tamarix nilotica (TN) and characterized them using X-ray diffraction, Fourier transform infrared spectroscopy, UV-visible spectroscopy, dynamic light scattering, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS), and transmission electron microscopy (TEM). We also assessed the antilisterial potential of the synthesized TN-AgNPs by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against two strains of L. monocytogenes and L. innocua. TN-AgNPs (2×MICs) showed a significant decrease in growth in all Listeria test strains. Release of cellular content and cell morphology analysis of TN-AgNP-treated bacterial cells demonstrated the mechanism of bactericidal activity of AgNPs. In addition, TN-AgNPs induced a significant decrease in swimming motility (62-71%), biofilm formation (57-64%), and preformed biofilms (48-58%) in all Listeria test strains at sub-inhibitory concentrations. Microtitre plate assay results for biofilm inhibition were confirmed by SEM and CLSM visualization of TN-AgNP-treated and TN-AgNP-untreated Listeria test strains. TN-AgNPs also showed wound-healing activity in MCF-7 cells by inhibiting cell migration in a scratch plate assay. TN-AgNP-induced enhanced reactive oxygen species generation in treated cells could be a plausible reason for the biofilm inhibitory activity of AgNPs. TN-AgNPs having antilisterial, antibiofilm, and wound-healing properties can be effectively used to prevent L. monocytogenes infections in the food industry and healthcare.
Collapse
Affiliation(s)
- Nasser A Al-Shabib
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University 2456 Riyadh 11451 Kingdom of Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University 2456 Riyadh 11451 Kingdom of Saudi Arabia
| | - Mohammad Nadeem
- Department of Botany and Microbiology, College of Science, King Saud University 2456 Riyadh 11451 Kingdom of Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University 2456 Riyadh 11451 Kingdom of Saudi Arabia
| | - Fahad Al-Qurainy
- Department of Botany and Microbiology, College of Science, King Saud University 2456 Riyadh 11451 Kingdom of Saudi Arabia
| | - Abdullah A Alyousef
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University 2460 Riyadh 11451 Kingdom of Saudi Arabia
| | - Mohammed Arshad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University 2460 Riyadh 11451 Kingdom of Saudi Arabia
| | - Altaf Khan
- Department of Pharmacology and Toxicology, Central Laboratory, College of Pharmacy, King Saud University 2460 Riyadh 11451 Kingdom of Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University 2456 Riyadh 11451 Kingdom of Saudi Arabia
| | - Pravej Alam
- Department of Biology, Prince Sattam bin Abdulaziz Univrsity Alkharj Kingdom of Saudi Arabia
| | - Thamer Albalawi
- Department of Biology, Prince Sattam bin Abdulaziz Univrsity Alkharj Kingdom of Saudi Arabia
| | - Syed Ali Shahzad
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University 2456 Riyadh 11451 Kingdom of Saudi Arabia
| |
Collapse
|