1
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
2
|
Hu Q, Zhang L, Yang R, Tang J, Dong G. Quaternary ammonium biocides promote conjugative transfer of antibiotic resistance gene in structure- and species-dependent manner. ENVIRONMENT INTERNATIONAL 2024; 189:108812. [PMID: 38878503 DOI: 10.1016/j.envint.2024.108812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/19/2024]
Abstract
The linkage between biocides and antibiotic resistance has been widely suggested in laboratories and various environments. However, the action mechanism of biocides on antibiotic resistance genes (ARGs) spread is still unclear. Thus, 6 quaternary ammonium biocides (QACs) with different bonded substituents or alkyl chain lengths were selected to assess their effects on the conjugation transfer of ARGs in this study. Two conjugation models with the same donor (E. coli DH5α (RP4)) into two receptors, E. coli MG1655 and pathogenic S. sonnei SE6-1, were constructed. All QACs were found to significantly promote intra- and inter-genus conjugative transfer of ARGs, and the frequency was highly impacted by their structure and receptors. At the same environmental exposure level (4 × 10-1 mg/L), didecyl dimethyl ammonium chloride (DDAC (C10)) promoted the most frequency of conjugative transfer, while benzathine chloride (BEC) promoted the least. With the same donor, the enhanced frequency of QACs of intra-transfer is higher than inter-transfer. Then, the acquisition mechanisms of two receptors were further determined using biochemical combined with transcriptome analysis. For the recipient E. coli, the promotion of the intragenus conjugative transfer may be associated with increased cell membrane permeability, reactive oxygen species (ROS) production and proton motive force (PMF)-induced enhancement of flagellar motility. Whereas, the increase of cell membrane permeability and decreased flagellar motility due to PMF disruption but encouraged biofilm formation, maybe the main reasons for promoting intergenus conjugative transfer in the recipient S. sonnei. As one pathogenic bacterium, S. sonnei was first found to acquire ARGs by biocide exposure.
Collapse
Affiliation(s)
- Qin Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| | - Rui Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jialin Tang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Guoliang Dong
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
3
|
Asoka AS, Kolikkandy A, Nair B, Kamath AJ, Sethi G, Nath LR. Role of Culinary Indian Spices in the Regulation of TGF-β Signaling Pathway in Inflammation-Induced Liver Cancer. Mol Nutr Food Res 2024; 68:e2300793. [PMID: 38766929 DOI: 10.1002/mnfr.202300793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Indexed: 05/22/2024]
Abstract
SCOPE Hepatocellular carcinoma (HCC) results from various etiologies, such as Hepatitis B and C, Alcoholic and Non-alcoholic fatty liver disorders, fibrosis, and cirrhosis. About 80 to 90% of HCC cases possess cirrhosis, which is brought on by persistent liver inflammation. TGF-β is a multifunctional polypeptide molecule that acts as a pro-fibrogenic marker, inflammatory cytokine, immunosuppressive agent, and pro-carcinogenic growth factor during the progression of HCC. The preclinical and clinical evidence illustrates that TGF-β can induce epithelial-to-mesenchymal transition, promoting progression and hepatocyte immune evasion. Therefore, targeting the TGF-β pathway can be a promising therapeutic option against HCC. METHODS AND RESULTS We carry out a systemic analysis of eight potentially selected culinary Indian spices: Turmeric, Black pepper, Ginger, Garlic, Fenugreek, Red pepper, Clove, Cinnamon, and their bioactives in regulation of the TGF-β pathway against liver cancer. CONCLUSION Turmeric and its active constituent, curcumin, possess the highest therapeutic potential in treating inflammation-induced HCC and they also have the maximum number of ongoing in-vivo and in-vitro studies.
Collapse
Affiliation(s)
- Ajay Sarija Asoka
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Anusha Kolikkandy
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Adithya J Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| |
Collapse
|
4
|
Xu J, Chen X, Song J, Wang C, Xu W, Tan H, Suo H. Antibacterial activity and mechanism of cell-free supernatants of Lacticaseibacillus paracasei against Propionibacterium acnes. Microb Pathog 2024; 189:106598. [PMID: 38423403 DOI: 10.1016/j.micpath.2024.106598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Propionibacterium acnes (P. acnes) is an anaerobic and gram-positive bacterium involved in the pathogenesis and inflammation of acne vulgaris. This study particularly focuses on the antimicrobial effect of Lacticaseibacillus paracasei LPH01 against P. acnes, a bacterium that causes acne vulgaris. Fifty-seven Lactobacillus strains were tested for their ability to inhibit P. acnes growth employing the Oxford Cup and double dilution methods. The cell-free supernatant (CFS) of L. paracasei LPH01 demonstrated a strong inhibitory effect, with an inhibition zone diameter of 24.65 ± 0.27 mm and a minimum inhibitory concentration of 12.5 mg/mL. Among the CFS, the fraction over 10 kDa (CFS-10) revealed the best antibacterial effect. Confocal laser scanning microscopes and flow cytometry showed that CFS-10 could reduce cell metabolic activity and cell viability and destroy the integrity and permeability of the cell membrane. A scanning electron microscope revealed that bacterial cells exhibited obvious morphological and ultrastructural changes, which further confirmed the damage of CFS-10 to the cell membrane and cell wall. Findings demonstrated that CFS-10 inhibited the conversion of triglycerides, decreased the production of free fatty acids, and down-regulated the extracellular expression of the lipase gene. This study provides a theoretical basis for the metabolite of L. paracasei LPH01 as a potential antibiotic alternative in cosmeceutical skincare products.
Collapse
Affiliation(s)
- Jiahui Xu
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China
| | - Weiping Xu
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Han Tan
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
5
|
Nesterovich VM, Belykh DA, Gorokhovets NV, Kurbatov LK, Zamyatnin AA, Ikryannikova LN. Secondary metabolites of plants and their possible role in the "age of superbugs". BIOMEDITSINSKAIA KHIMIIA 2023; 69:371-382. [PMID: 38153052 DOI: 10.18097/pbmc20236906371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Bacterial infections are a serious cause of high morbidity and mortality worldwide. Over the past decades, the drug resistance of bacterial pathogens has been steadily increasing, while the rate of development of new effective antibacterial drugs remains consistently low. The plant kingdom is sometimes called a bottomless well for the search for new antimicrobial therapies. This is due to the fact that plants are easily accessible and cheap to process, while extracts and components of plant origin often demonstrate a high level of biological activity with minor side effects. The variety of compounds obtained from plant raw materials can provide a wide choice of various chemical structures for interaction with various targets inside bacterial cells, while the rapid development of modern biotechnological tools opens the way to the targeted production of bioactive components with desired properties. The objective of this review is to answer the question, whether antimicrobials of plant origin have a chance to play the role of a panacea in the fight against infectious diseases in the "post-antibiotic era".
Collapse
Affiliation(s)
| | | | | | | | - A A Zamyatnin
- Sechenov University, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
6
|
Chen S, Shan Y, Liu C, Du C, Zhu J, Yang F, Shao Y, Bao Q, Wang Y, Ran Y, Yin W. Antimildew Effect of Three Phenolic Compounds and the Efficacy of Antimildew Sliced Bamboo Veneer. Molecules 2023; 28:4941. [PMID: 37446603 DOI: 10.3390/molecules28134941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The development of the bamboo industry has been hindered by environmental issues caused by the application of bamboo preservatives. Chinese herbal phenolic compounds have been shown to possess broad-spectrum, potent antimildew properties, making them promising candidates for the development of new bamboo mildew inhibitors. In this study, we investigated the antimildew properties of three phenolic compounds, eugenol, carvacrol, and paeonol, against common mildews in bamboo materials using the Oxford cup method and the double-dilution method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to analyze the antimildew mechanism and its effects on mildew cell morphology. Our results showed that carvacrol exhibited the strongest antimildew activity, with minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values of 1.56 mg/mL and 1.76 mg/mL, respectively, followed by eugenol and paeonol. At a concentration of 25 mg/mL, eugenol and carvacrol had an inhibitory rate of over 50% against various mildews. Different concentrations of the three compounds significantly disrupted the morphology and structural integrity of mildew hyphae, with the extent of damage increasing with concentration and treatment duration. In the sliced bamboo mildew prevention experiment, carvacrol at a concentration of 29.25 mg/mL was found to be highly effective against all tested mildews. Our study provides new insights and a theoretical basis for the development of eco-friendly bamboo mildew inhibitors based on plant phenolic compounds.
Collapse
Affiliation(s)
- Shiqin Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Yingying Shan
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Chunlin Liu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Chungui Du
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Jiawei Zhu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Fei Yang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuran Shao
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Qichao Bao
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuting Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Ying Ran
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenxiu Yin
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
7
|
Su R, Guo X, Cheng S, Zhang Z, Yang H, Wang J, Song L, Liu Z, Wang Y, Lü X, Shi C. Inactivation of Salmonella using ultrasound in combination with Litsea cubeba essential oil nanoemulsion and its bactericidal application on cherry tomatoes. ULTRASONICS SONOCHEMISTRY 2023; 98:106481. [PMID: 37336076 PMCID: PMC10300259 DOI: 10.1016/j.ultsonch.2023.106481] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
The presence of Salmonella in nature poses a significant and unacceptable threat to the human public health domain. In this study, the antibacterial effect and mechanism of ultrasound (US) combined with Litsea cubeba essential oil nanoemulsion (LEON) on Salmonella. LEON + US treatment has a significant bactericidal effect on Salmonella. Reactive oxygen species (ROS), malondialdehyde (MDA) detection, N-phenyl-l-naphthylamine (NPN) uptake and nucleic acid release assays showed that LEON + US exacerbated cell membrane lipid peroxidation and increased the permeability of the cell membrane. The results of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) showed that LEON + US treatment was able to alter cell morphology. It can be observed by flow cytometry (FCM) that LEON + US treatment can cause cell apoptosis. In addition, bacterial counts of cherry tomatoes treated with LEON (0.08 μL/mL) + US (345 W/cm2) for 9 min were reduced by 6.50 ± 0.20 log CFU/mL. This study demonstrates that LEON + US treatment can be an effective way to improve the safety of fruits and vegetables in the food industry.
Collapse
Affiliation(s)
- Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyi Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziruo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingzi Wang
- School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Cao J, Gao M, Wang J, Liu Y, Zhang X, Ping Y, Liu J, Chen G, Xu D, Huang X, Liu G. Construction of nano slow-release systems for antibacterial active substances and its applications: A comprehensive review. Front Nutr 2023; 10:1109204. [PMID: 36819707 PMCID: PMC9928761 DOI: 10.3389/fnut.2023.1109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
At present, nano-carrier materials with antibacterial activity are of great significance. Due to the widespread resistance of many pathogenic microorganisms, it has seriously threatened human health. The natural antimicrobial substances extracted from fruits and vegetables can significantly improve their stability combined with nano-carrier materials. The resistance of pathogenic microorganisms will be substantially reduced, greatly enhancing the effect of active antimicrobial substances. Nanotechnology has excellent research prospects in the food industry, antibacterial preservation, food additives, food packaging, and other fields. This paper introduces nano-carrier materials and preparation techniques for loading and encapsulating active antibacterial substances in detail by constructing a nano-release system for active antibacterial substances. The antibacterial effect can be achieved by protecting them from adverse external conditions and destroying the membrane of pathogenic microorganisms. The mechanism of the slow release of the bacteriostatic active substance is also described. The mechanism of carrier loading and release is mainly through non-covalent forces between the bacteriostatic active substance and the carrier material, such as hydrogen bonding, π-π stacking, van der Waals forces, electrostatic interactions, etc., as well as the loading and adsorption of the bacteriostatic active substance by the chemical assembly. Finally, its wide application in food and medicine is introduced. It is hoped to provide a theoretical basis and technical support for the efficient utilization and product development of bacteriostatic active substances.
Collapse
Affiliation(s)
- Jiayong Cao
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China,State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Mingkun Gao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Jian Wang
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China,*Correspondence: Jian Wang, ✉
| | - Yuan Liu
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China
| | - Xuan Zhang
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China
| | - Yi Ping
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia Liu
- Internal Trade Food Science Research Institute Co., Ltd, Beijing, China
| | - Ge Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China,Donghui Xu, ✉
| | - Xiaodong Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China,Guangyang Liu, ✉
| |
Collapse
|