1
|
Sousa M, Rocha R, Araújo D, Castro J, Barbosa A, Azevedo NF, Cerqueira L, Almeida C. A New Peptide Nucleic Acid Fluorescence In Situ Hybridization Probe for the Specific Detection of Salmonella Species in Food Matrices. Foodborne Pathog Dis 2024; 21:298-305. [PMID: 38484326 DOI: 10.1089/fpd.2023.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Salmonella spp. is among the most central etiological agents in foodborne bacterial disorders. To identify Salmonella spp., numerous new molecular techniques have been developed conversely to the traditional culture-based methods. In this work, a new peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method was developed for the specific detection of Salmonella species, allowing a faster analysis compared with the traditional methods (ISO 6579-1: 2017). The method was optimized based on a novel PNA probe (SalPNA1692) combined with a blocker probe to detect Salmonella in food samples through an assessment of diverse-rich and selective enrichment broths. Our findings indicated that the best outcome was obtained using a 24-h pre-enrichment step in buffered peptone water, followed by RambaQuick broth selective enrichment for 16 h. For the enrichment step performance validation, fresh ground beef was artificially contaminated with two ranges of concentration of inoculum: a low level (0.2-2 colony-forming units [CFUs]/25 g) and a high level (2-10 CFUs/25 g). The new PNA-FISH method presented a specificity of 100% and a detection limit of 0.5 CFU/25 g of food sample, which confirms the great potential of applying PNA probes in food analysis.
Collapse
Affiliation(s)
- Mário Sousa
- Biomode SA, Av. Mestre José Veiga, Braga, Portugal
| | - Rui Rocha
- Biomode SA, Av. Mestre José Veiga, Braga, Portugal
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, Braga, Portugal
- Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- CISAS-Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Álvares, Viana do Castelo, Portugal
| | - Daniela Araújo
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, Braga, Portugal
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Joana Castro
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, Braga, Portugal
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Ana Barbosa
- Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- AliCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Nuno F Azevedo
- Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- AliCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Laura Cerqueira
- Biomode SA, Av. Mestre José Veiga, Braga, Portugal
- Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- AliCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Carina Almeida
- Biomode SA, Av. Mestre José Veiga, Braga, Portugal
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, Braga, Portugal
- Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
- AliCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| |
Collapse
|
2
|
Hou Z, Xu B, Liu L, Yan R, Zhang J. Isolation, Identification, Antimicrobial Resistance, Genotyping, and Whole-Genome Sequencing Analysis of Salmonella Enteritidis Isolated from a Food-Poisoning Incident. Pol J Microbiol 2024; 73:69-89. [PMID: 38437471 PMCID: PMC10911658 DOI: 10.33073/pjm-2024-008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/21/2024] [Indexed: 03/06/2024] Open
Abstract
Salmonella enterica is a common pathogen in humans and animals that causes food poisoning and infection, threatening public health safety. We aimed to investigate the genome structure, drug resistance, virulence characteristics, and genetic relationship of a Salmonella strain isolated from patients with food poisoning. The pathogen strain 21A was collected from the feces of patients with food poisoning, and its minimum inhibitory concentration against commonly used antibiotics was determined using the strip test and Kirby-Bauer disk methods. Subsequently, WGS analysis was used to reveal the genome structural characteristics and the carrying status of resistance genes and virulence genes of strain 21A. In addition, an MLST-based minimum spanning tree and an SNP-based systematic spanning tree were constructed to investigate its genetic evolutionary characteristics. The strain 21A was identified by mass spectrometry as S. enterica, which was found to show resistance to ampicillin, piperacillin, sulbactam, levofloxacin, and ciprofloxacin. The WGS and bioinformatics analyses revealed this strain as Salmonella Enteritidis belonging to ST11, which is common in China, containing various resistance genes and significant virulence characteristics. Strain 21A was closely related to the SJTUF strains, a series strains from animal, food and clinical sources, as well as from Shanghai, China, which were located in the same evolutionary clade. According to the genetic makeup of strain 21A, the change G > A was found to be the most common variation. We have comprehensively analyzed the genomic characteristics, drug resistance phenotype, virulence phenotype, and genetic evolution relationship of S. Enteritidis strain 21A, which will contribute towards an in-depth understanding of the pathogenic mechanism of S. Enteritidis and the effective prevention and control of foodborne diseases.
Collapse
Affiliation(s)
- Zhuru Hou
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
| | - Benjin Xu
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Ling Liu
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Rongrong Yan
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Jinjing Zhang
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| |
Collapse
|