1
|
Syamal S, Taritsa IC, Alvarez AH, Schuster K, Foppiani J, Kaplan D, Lin SJ. Evaluating the Mechanical Strength of 3-Dimensionally Printed Implants in Septorhinoplasty through Finite Element Analysis. Plast Reconstr Surg 2025; 155:319e-333e. [PMID: 38923894 DOI: 10.1097/prs.0000000000011600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
BACKGROUND Autologous nasoseptal cartilage grafts are used to correct nasal asymmetry and deviation in rhinoplasty, but patients who have undergone multiple operations may have limited autologous cartilage tissue available. L-strut implants created on a 3-dimensional (3D) printer may address these challenges in the future, but their mechanical strength is understudied. Silk fibroin-gelatin (SFG), polycaprolactone (PCL), and polylactide (PLA) are bioinks known for their strength. The authors present finite element analysis (FEA) models comparing the mechanical strength of 3D-printed SFG, PCL, and PLA implants with nasoseptal cartilage grafts when autologous or allografts are not available. METHODS FEA models compared the stress and deformation responses of 3D-printed solid and scaffold implant replacements to cartilage. To simulate a daily force from overlying soft tissue, a unidirectional load was applied at the "keystone" region given its structural role and compared with native cartilaginous properties. RESULTS The 3D-printed solid SFG, PCL, and PLA and scaffold PCL and PLA models demonstrated lower deformations compared with cartilage. Solid SFG balanced strength and flexibility. The maximum stress was below all materials' yield stresses, suggesting that their deformations are unlikely permanent under a daily load. CONCLUSIONS The authors' FEA models suggest that 3D-printed L-strut implants carry promising mechanical strength. Solid SFG results mimicked cartilage's mechanical behavior. Thus, scaffold SFG merits further geometric optimization for potential use for cartilage substitution. The 3D-printed septal cartilage replacement implants can potentially enhance surgical management of patients who lack available donor cartilage in select settings. CLINICAL RELEVANCE STATEMENT Computational simulations can evaluate the strength of 3D-printed implants and their potential to replace septal cartilage in septorhinoplasty. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, V.
Collapse
Affiliation(s)
- Sujata Syamal
- From the Division of Continuing Education, Harvard University Extension School Cambridge
| | - Iulianna C Taritsa
- Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Angelica Hernandez Alvarez
- Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Kirsten Schuster
- Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Jose Foppiani
- Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - David Kaplan
- Department of Biomedical Engineering, Tufts University
| | - Samuel J Lin
- Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School
- Department of Biomedical Engineering, Tufts University
| |
Collapse
|
2
|
Mattavelli D, Verzeletti V, Deganello A, Fiorentino A, Gualtieri T, Ferrari M, Taboni S, Anfuso W, Ravanelli M, Rampinelli V, Grammatica A, Buffoli B, Maroldi R, Elisabetta C, Rezzani R, Nicolai P, Piazza C. Computer-aided designed 3D-printed polymeric scaffolds for personalized reconstruction of maxillary and mandibular defects: a proof-of-concept study. Eur Arch Otorhinolaryngol 2024; 281:1493-1503. [PMID: 38170208 PMCID: PMC10857968 DOI: 10.1007/s00405-023-08392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE To investigate the potential reconstruction of complex maxillofacial defects using computer-aided design 3D-printed polymeric scaffolds by defining the production process, simulating the surgical procedure, and explore the feasibility and reproducibility of the whole algorithm. METHODS This a preclinical study to investigate feasibility, reproducibility and efficacy of the reconstruction algorithm proposed. It encompassed 3 phases: (1) scaffold production (CAD and 3D-printing in polylactic acid); (2) surgical simulation on cadaver heads (navigation-guided osteotomies and scaffold fixation); (3) assessment of reconstruction (bone and occlusal morphological conformance, symmetry, and mechanical stress tests). RESULTS Six cadaver heads were dissected. Six types of defects (3 mandibular and 3 maxillary) with different degree of complexity were tested. In all case the reconstruction algorithm could be successfully completed. Bone morphological conformance was optimal while the occlusal one was slightly higher. Mechanical stress tests were good (mean value, 318.6 and 286.4 N for maxillary and mandibular defects, respectively). CONCLUSIONS Our reconstructive algorithm was feasible and reproducible in a preclinical setting. Functional and aesthetic outcomes were satisfactory independently of the complexity of the defect.
Collapse
Affiliation(s)
- Davide Mattavelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, ASST Spedali Civili of Brescia, Brescia, Italy.
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, School of Medicine, Brescia, Italy.
| | - Vincenzo Verzeletti
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, School of Medicine, Brescia, Italy
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua-Azienda Ospedale Università di Padova, Padua, Italy
| | - Alberto Deganello
- Otolaryngology Head and Neck Surgery Department of IRCCS, National Cancer Institute (INT), Milan, Italy
| | - Antonio Fiorentino
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| | - Tommaso Gualtieri
- Department of Otorhinolaryngology, Head and Neck Surgery, "Nuovo Santo Stefano" Civil Hospital, Prato, Italy
| | - Marco Ferrari
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua-Azienda Ospedale Università di Padova, Padua, Italy
- Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON, Canada
| | - Stefano Taboni
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua-Azienda Ospedale Università di Padova, Padua, Italy
- Artificial Intelligence in Medicine and Innovation in Clinical Research and Methodology (PhD Program), Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - William Anfuso
- Otolaryngology Head and Neck Surgery Department of IRCCS, National Cancer Institute (INT), Milan, Italy
| | - Marco Ravanelli
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, School of Medicine, Brescia, Italy
- Unit of Radiology, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Vittorio Rampinelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Alberto Grammatica
- Unit of Otorhinolaryngology-Head and Neck Surgery, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Barbara Buffoli
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, School of Medicine, Brescia, Italy
| | - Roberto Maroldi
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, School of Medicine, Brescia, Italy
- Unit of Radiology, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Ceretti Elisabetta
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| | - Rita Rezzani
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, School of Medicine, Brescia, Italy
| | - Piero Nicolai
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua-Azienda Ospedale Università di Padova, Padua, Italy
| | - Cesare Piazza
- Unit of Otorhinolaryngology-Head and Neck Surgery, ASST Spedali Civili of Brescia, Brescia, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, School of Medicine, Brescia, Italy
| |
Collapse
|