1
|
|
2
|
Balduyck M, Odou MF, Zerimech F, Porchet N, Lafitte JJ, Maitre B. Diagnosis of alpha-1 antitrypsin deficiency: modalities, indications and diagnosis strategy. Rev Mal Respir 2014; 31:729-45. [PMID: 25391508 DOI: 10.1016/j.rmr.2014.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 10/25/2013] [Indexed: 12/27/2022]
Abstract
Alpha-1 antitrypsin (α1-AT) deficiency is an autosomal recessive genetic disorder, which predisposes affected patients to development of pulmonary emphysema or liver cirrhosis. Despite the guidelines from the American Thoracic Society and the European Respiratory Society about α1-AT deficiency screening, it remains significantly under recognized. So, it seems necessary to propose an efficient and suitable biological approach to improve diagnosis and management of α1-AT deficiency. α1-AT is a 52 kDa glycoprotein predominantly produced in the liver and its physiological serum concentration for adults ranges from 0.9 to 2.0g/L (17-39 μmol/L). It is encoded by the SERPINA1 gene, which is highly pleomorphic, and to date, more than 100 alleles have been identified. α1-AT testing would initially involve quantification of serum α1-AT concentration with possible complementary measurement of the elastase inhibitory capacity of serum. If the serum α1-AT concentration is reduced below the reference value, two strategies for laboratory testing can be used: (i) serum α1-AT phenotyping by isoelectric focusing which allows identification of the most common variant designated as the PI M variant but also of various deficient variants besides the predominant PI S and PI Z ones; (ii) genotyping by allele-specific PCR methods which allows only identification of the deficient PI S and PI Z alleles. Identification of the null alleles or of other rare deficient alleles can be performed by direct sequencing of the whole SERPINA1 gene as a reflex test.
Collapse
Affiliation(s)
- M Balduyck
- Laboratoire de biochimie et biologie moléculaire (HMNO), centre de biologie pathologie, CHRU de Lille, boulevard du Pr.-J.-Leclercq, 59037 Lille cedex, France; Laboratoire de biochimie et biologie moléculaire, faculté de pharmacie, université de Lille 2, 59006 Lille, France.
| | - M-F Odou
- Laboratoire de biochimie et biologie moléculaire (HMNO), centre de biologie pathologie, CHRU de Lille, boulevard du Pr.-J.-Leclercq, 59037 Lille cedex, France; Laboratoire de bactériologie virologie, faculté de pharmacie, université de Lille 2, 59006 Lille, France
| | - F Zerimech
- Laboratoire de biochimie et biologie moléculaire (HMNO), centre de biologie pathologie, CHRU de Lille, boulevard du Pr.-J.-Leclercq, 59037 Lille cedex, France
| | - N Porchet
- Laboratoire de biochimie et biologie moléculaire (HMNO), centre de biologie pathologie, CHRU de Lille, boulevard du Pr.-J.-Leclercq, 59037 Lille cedex, France; Inserm, U837, centre de recherche Jean-Pierre-Aubert, 59045 Lille, France
| | - J-J Lafitte
- Service de pneumologie et oncologie thoracique, hôpital A.-Calmette, CHRU de Lille, 59037 Lille, France
| | - B Maitre
- Unité de pneumologie, réanimation médicale, groupe hospitalier Mondor, IMRB U955, équipe 8, université Paris Est, 94010 Créteil, France
| |
Collapse
|
3
|
WITHDRAWN: Diagnostic du déficit en alpha-1-antitrypsine : les moyens, les indications et la stratégie diagnostique. Rev Mal Respir 2014. [DOI: 10.1016/j.rmr.2014.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Barker SD, Bale S, Booker J, Buller A, Das S, Friedman K, Godwin AK, Grody WW, Highsmith E, Kant JA, Lyon E, Mao R, Monaghan KG, Payne DA, Pratt VM, Schrijver I, Shrimpton AE, Spector E, Telatar M, Toji L, Weck K, Zehnbauer B, Kalman LV. Development and characterization of reference materials for MTHFR, SERPINA1, RET, BRCA1, and BRCA2 genetic testing. J Mol Diagn 2009; 11:553-61. [PMID: 19767587 DOI: 10.2353/jmoldx.2009.090078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Well-characterized reference materials (RMs) are integral in maintaining clinical laboratory quality assurance for genetic testing. These RMs can be used for quality control, monitoring of test performance, test validation, and proficiency testing of DNA-based genetic tests. To address the need for such materials, the Centers for Disease Control and Prevention established the Genetic Testing Reference Material Coordination Program (GeT-RM), which works with the genetics community to improve public availability of characterized RMs for genetic testing. To date, the GeT-RM program has coordinated the characterization of publicly available genomic DNA RMs for a number of disorders, including cystic fibrosis, Huntington disease, fragile X, and several genetic conditions with relatively high prevalence in the Ashkenazi Jewish population. Genotypic information about a number of other cell lines has been collected and is also available. The present study includes the development and commutability/genotype characterization of 10 DNA samples for clinically relevant mutations or sequence variants in the following genes: MTHFR; SERPINA1; RET; BRCA1; and BRCA2. DNA samples were analyzed by 19 clinical genetic laboratories using a variety of assays and technology platforms. Concordance was 100% for all samples, with no differences observed between laboratories using different methods. All DNA samples are available from Coriell Cell Repositories and characterization information can be found on the GeT-RM website.
Collapse
Affiliation(s)
- Shannon D Barker
- Division of Laboratory Systems, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, G23, Atlanta, GA 30329-4018, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|