1
|
Hale AT, Boudreau H, Devulapalli R, Duy PQ, Atchley TJ, Dewan MC, Goolam M, Fieggen G, Spader HL, Smith AA, Blount JP, Johnston JM, Rocque BG, Rozzelle CJ, Chong Z, Strahle JM, Schiff SJ, Kahle KT. The genetic basis of hydrocephalus: genes, pathways, mechanisms, and global impact. Fluids Barriers CNS 2024; 21:24. [PMID: 38439105 PMCID: PMC10913327 DOI: 10.1186/s12987-024-00513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Hydrocephalus (HC) is a heterogenous disease characterized by alterations in cerebrospinal fluid (CSF) dynamics that may cause increased intracranial pressure. HC is a component of a wide array of genetic syndromes as well as a secondary consequence of brain injury (intraventricular hemorrhage (IVH), infection, etc.) that can present across the age spectrum, highlighting the phenotypic heterogeneity of the disease. Surgical treatments include ventricular shunting and endoscopic third ventriculostomy with or without choroid plexus cauterization, both of which are prone to failure, and no effective pharmacologic treatments for HC have been developed. Thus, there is an urgent need to understand the genetic architecture and molecular pathogenesis of HC. Without this knowledge, the development of preventive, diagnostic, and therapeutic measures is impeded. However, the genetics of HC is extraordinarily complex, based on studies of varying size, scope, and rigor. This review serves to provide a comprehensive overview of genes, pathways, mechanisms, and global impact of genetics contributing to all etiologies of HC in humans.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK.
| | - Hunter Boudreau
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Rishi Devulapalli
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Travis J Atchley
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Michael C Dewan
- Division of Pediatric Neurosurgery, Monroe Carell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mubeen Goolam
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Graham Fieggen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Pediatric Neurosurgery, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Heather L Spader
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Anastasia A Smith
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jeffrey P Blount
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - James M Johnston
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Brandon G Rocque
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Curtis J Rozzelle
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Zechen Chong
- Heflin Center for Genomics, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jennifer M Strahle
- Division of Pediatric Neurosurgery, St. Louis Children's Hospital, Washington University in St. Louis, St. Louis, MO, USA
| | - Steven J Schiff
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Fasciculations in human hereditary disease. Acta Neurol Belg 2015; 115:91-5. [PMID: 25073774 DOI: 10.1007/s13760-014-0335-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 07/13/2014] [Indexed: 12/11/2022]
Abstract
Fasciculations are a manifestation of peripheral nerve hyperexcitability in addition to myokymia, neuromyotonia, cramps, or tetany. Fasciculations occur in hereditary and non-hereditary diseases. Among the hereditary diseases, fasciculations are most frequently reported in familial amyotrophic lateral sclerosis (FALS), and spinal muscular atrophy (SMA). Among the non-hereditary diseases, fasciculations occur most frequently in peripheral nerve hyperexcitability syndromes (Isaac's syndrome, voltage-gated potassium channelopathy, cramp fasciculation syndrome, Morvan syndrome). If the cause of fasciculations remains unknown, they are called benign. Systematically reviewing the literature about fasciculations in hereditary disease shows that fasciculations can be a phenotypic feature in bulbospinal muscular atrophy (BSMA), GM2-gangliosidosis, triple-A syndrome, or hereditary neuropathy. Additionally, fasciculations have been reported in familial amyloidosis, spinocerebellar ataxias, Huntington's disease, Rett syndrome, central nervous system disease due to L1-cell adhesion molecule (L1CAM) mutations, Fabry's disease, or Gerstmann-Sträussler disease. Rarely, fasciculations may be a phenotypic feature in patients with mitochondrial disorders or other myopathies. Fasciculations are part of the phenotype in much more genetic disorders than commonly assumed. Fasciculations not only occur in motor neuron disease, but also in hereditary neuropathy, spinocerebellar ataxia, GM2-gangliosidosis, Huntington's disease, Rett syndrome, Fabry's disease, Gerstmann-Sträussler disease, mitochondrial disorders, or muscular dystrophies.
Collapse
|
3
|
Hunter JM, Kiefer J, Balak CD, Jooma S, Ahearn ME, Hall JG, Baumbach-Reardon L. Review of X-linked syndromes with arthrogryposis or early contractures-aid to diagnosis and pathway identification. Am J Med Genet A 2015; 167A:931-73. [DOI: 10.1002/ajmg.a.36934] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/05/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Jesse M. Hunter
- Integrated Functional Cancer Genomics; Translational Genomics Research Institute; Phoenix Arizona
| | - Jeff Kiefer
- Knowledge Mining; Translational Genomics Research Institute; Phoenix Arizona
| | - Christopher D. Balak
- Integrated Functional Cancer Genomics; Translational Genomics Research Institute; Phoenix Arizona
| | - Sonya Jooma
- Integrated Functional Cancer Genomics; Translational Genomics Research Institute; Phoenix Arizona
| | - Mary Ellen Ahearn
- Integrated Functional Cancer Genomics; Translational Genomics Research Institute; Phoenix Arizona
| | - Judith G. Hall
- Departments of Medical Genetics and Pediatrics; University of British Columbia and BC Children's Hospital Vancouver; British Columbia Canada
| | - Lisa Baumbach-Reardon
- Integrated Functional Cancer Genomics; Translational Genomics Research Institute; Phoenix Arizona
| |
Collapse
|
5
|
Yamasaki M, Nonaka M, Suzumori N, Nakamura H, Fujita H, Namba A, Kamei Y, Yamada T, Pooh RK, Tanemura M, Sudo N, Nagasaka M, Yoshioka E, Shofuda T, Kanemura Y. Prenatal molecular diagnosis of a severe type of L1 syndrome (X-linked hydrocephalus). J Neurosurg Pediatr 2011; 8:411-6. [PMID: 21961551 DOI: 10.3171/2011.7.peds10531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The aim of this study was to evaluate the feasibility of prenatal L1CAM gene testing for X-linked hydrocephalus (XLH). METHODS In a nationwide study conducted in Japan between 1999 and 2009, the authors identified 51 different L1CAM gene mutations in 56 families with XLH. Of these 56 families, 9 obligate carriers requested prenatal gene mutation analysis for the fetal L1CAM gene in 14 pregnancies. RESULTS In 2004, new clinical guidelines for genetic testing were established by 10 Japanese genetic medicine-related societies. These guidelines stated that the genetic testing of carriers should be done only with their consent and with genetic counseling. Therefore, because females are carriers, since 2004, L1CAM gene analysis has not been performed for female fetuses. The authors report on 7 fetal genetic analyses that were performed at the request of families carrying L1CAM mutations, involving 3 female (prior to 2004) and 4 male fetuses. Of the 7 fetuses, 3 (1 male and 2 female) carried L1CAM mutations. Of these 3, 1 pregnancy (the male fetus) was terminated; in the other cases, the pregnancies continued, and 3 female and 3 male babies without the XLH phenotype were born. CONCLUSIONS Prenatal L1CAM gene testing combined with genetic counseling was beneficial for families carrying L1CAM mutations.
Collapse
Affiliation(s)
- Mami Yamasaki
- Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka City, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Xu Y, Ye H, Shen Y, Xu Q, Zhu L, Liu J, Wu JY. Dscam mutation leads to hydrocephalus and decreased motor function. Protein Cell 2011; 2:647-55. [PMID: 21904980 DOI: 10.1007/s13238-011-1072-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 05/30/2011] [Indexed: 11/28/2022] Open
Abstract
The nervous system is one of the most complicated organ systems in invertebrates and vertebrates. Down syndrome cell adhesion molecule (DSCAM) of the immunoglobulin (Ig) superfamily is expressed widely in the nervous system during embryonic development. Previous studies in Drosophila suggest that Dscam plays important roles in neural development including axon branching, dendritic tiling and cell spacing. However, the function of the mammalian DSCAM gene in the formation of the nervous system remains unclear. Here, we show that Dscam ( del17 ) mutant mice exhibit severe hydrocephalus, decreased motor function and impaired motor learning ability. Our data indicate that the mammalian DSCAM gene is critical for the formation of the central nervous system.
Collapse
Affiliation(s)
- Yiliang Xu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Itoh K, Fujisaki K, Watanabe M. Human L1CAM carrying the missense mutations of the fibronectin-like type III domains is localized in the endoplasmic reticulum and degraded by polyubiquitylation. J Neurosci Res 2011; 89:1637-45. [PMID: 21688291 DOI: 10.1002/jnr.22695] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/11/2011] [Accepted: 04/15/2011] [Indexed: 11/09/2022]
Abstract
Any mutations in the human neural cell adhesion molecule L1 (hL1CAM) gene might cause various types of serious neurological syndromes in humans, characterized by increased mortality, mental retardation, and various malformations of the nervous system. Such missense mutations often cause severe abnormalities or even fatalities, and the reason for this may be a disruption of the adhesive function of L1CAM resulting from a misdirection of the degradative pathway. Transfection studies using neuroblastoma N2a cells demonstrated that hL1CAM carrying the missense mutations in the fibronectin-like type III (FnIII) domains most likely is located within the endoplasmic reticulum (ER), but it is less well expressed on the cell surface. One mutant, L935P, in the fourth FnIII domain, was chosen from six mutants (K655 and G698 at Fn1, L935P and P941 at Fn4, W1036 and Y1070 at Fn5) in the FnIII domains to study in detail the functions of hL1CAM(200 kDa) , such as the intracellular traffic and degradation, because only a single band at 200 kDa was detected in the hL1CAM(L935P) -transfected cells. hL1CAM(200 kDa) is expressed predominantly in the ER but not on the cell surface. In addition, this missense mutated hL1CAM(200 kDa) is polyubiquitylated at some sites in the extracellular domain and thus becomes degraded by proteasomes via the ER-associated degradation pathway. These observations demonstrate that the missense mutations of hL1CAM in the FnIII domain may cause the resultant pathogenesis because of a loss of expression on the cell surface resulting from misrouting to the degradative pathway.
Collapse
Affiliation(s)
- Kouichi Itoh
- Laboratory of Molecular and Cellular Neurosciences, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki-city, Kagawa, Japan.
| | | | | |
Collapse
|