1
|
The Effects of 12 Weeks of a Combined Exercise Program on Physical Function and Hormonal Status in Elderly Korean Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16214196. [PMID: 31671514 PMCID: PMC6862258 DOI: 10.3390/ijerph16214196] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/23/2022]
Abstract
Aging causes a decline in physical function and hormonal balance. Exercise can improve these parameters. However, the beneficial effects of a combined exercise program (Korean dance and yoga) on physical function and hormonal status in elderly women remain unknown. This study aims to investigate the effects of a 12-week combined exercise program on balance, flexibility, muscle strength, and hormonal status in elderly Korean women. Twenty-five healthy elderly women were recruited and randomly divided into the control (CON) and exercise (EXE) groups. The EXE group underwent the combined exercise program (60 min/day and 3 times/week) for 12 weeks. The two groups did not differ in body weight, lean body mass, fat mass, body fat percentage, or body mass index at baseline or in the changes following the experimental conditions. A significant time × group interaction was detected for anterior and posterior dynamic balance, static balance, and growth hormone (GH). After the combined exercise program, anterior dynamic balance, posterior dynamic balance, static balance, flexibility, muscle strength, GH, dehydroepiandrosterone-sulfate, and estrogen significantly increased in the EXE group compared to the CON group. In conclusion, the combined exercise program contributed to improvements in overall health, including physical function and hormonal status, in elderly Korean women.
Collapse
|
2
|
Hormone Replacement Therapy Associated White Blood Cell DNA Methylation and Gene Expression are Associated With Within-Pair Differences of Body Adiposity and Bone Mass. Twin Res Hum Genet 2016; 18:647-61. [PMID: 26678050 DOI: 10.1017/thg.2015.82] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The loss of estrogen during menopause causes changes in the female body, with wide-ranging effects on health. Estrogen-containing hormone replacement therapy (HRT) leads to a relief of typical menopausal symptoms, benefits bone and muscle health, and is associated with tissue-specific gene expression profiles. As gene expression is controlled by epigenetic factors (including DNA methylation), many of which are environmentally sensitive, it is plausible that at least part of the HRT-associated gene expression is due to changes in DNA methylation profile. We investigated genome-wide DNA methylation and gene expression patterns of white blood cells (WBCs) and their associations with body composition, including muscle and bone measures of monozygotic (MZ) female twin pairs discordant for HRT. We identified 7,855 nominally significant differentially methylated regions (DMRs) associated with 4,044 genes. Of the genes with DMRs, five (ACBA1, CCL5, FASLG, PPP2R2B, and UHRF1) were also differentially expressed. All have been previously associated with HRT or estrogenic regulation, but not with HRT-associated DNA methylation. All five genes were associated with bone mineral content (BMC), and ABCA1, FASLG, and UHRF1 were also associated with body adiposity. Our study is the first to show that HRT associates with genome-wide DNA methylation alterations in WBCs. Moreover, we show that five differentially expressed genes with DMRs associate with clinical measures, including body fat percentage, lean body mass, bone mass, and blood lipids. Our results indicate that at least part of the known beneficial HRT effects on body composition and bone mass may be regulated by DNA methylation associated alterations in gene expression in circulating WBCs.
Collapse
|
3
|
Riedel BC, Thompson PM, Brinton RD. Age, APOE and sex: Triad of risk of Alzheimer's disease. J Steroid Biochem Mol Biol 2016; 160:134-47. [PMID: 26969397 PMCID: PMC4905558 DOI: 10.1016/j.jsbmb.2016.03.012] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 03/02/2016] [Accepted: 03/06/2016] [Indexed: 02/06/2023]
Abstract
Age, apolipoprotein E ε4 (APOE) and chromosomal sex are well-established risk factors for late-onset Alzheimer's disease (LOAD; AD). Over 60% of persons with AD harbor at least one APOE-ε4 allele. The sex-based prevalence of AD is well documented with over 60% of persons with AD being female. Evidence indicates that the APOE-ε4 risk for AD is greater in women than men, which is particularly evident in heterozygous women carrying one APOE-ε4 allele. Paradoxically, men homozygous for APOE-ε4 are reported to be at greater risk for mild cognitive impairment and AD. Herein, we discuss the complex interplay between the three greatest risk factors for Alzheimer's disease, age, APOE-ε4 genotype and chromosomal sex. We propose that the convergence of these three risk factors, and specifically the bioenergetic aging perimenopause to menopause transition unique to the female, creates a risk profile for AD unique to the female. Further, we discuss the specific risk of the APOE-ε4 positive male which appears to emerge early in the aging process. Evidence for impact of the triad of AD risk factors is most evident in the temporal trajectory of AD progression and burden of pathology in relation to APOE genotype, age and sex. Collectively, the data indicate complex interactions between age, APOE genotype and gender that belies a one size fits all approach and argues for a precision medicine approach that integrates across the three main risk factors for Alzheimer's disease.
Collapse
Affiliation(s)
- Brandalyn C Riedel
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Paul M Thompson
- USC Institute for Neuroimaging and Informatics, University of Southern California, Marina del Rey, CA 90292, USA
| | - Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
5
|
Muka T, Vargas KG, Jaspers L, Wen KX, Dhana K, Vitezova A, Nano J, Brahimaj A, Colpani V, Bano A, Kraja B, Zaciragic A, Bramer WM, van Dijk GM, Kavousi M, Franco OH. Estrogen receptor β actions in the female cardiovascular system: A systematic review of animal and human studies. Maturitas 2016; 86:28-43. [PMID: 26921926 DOI: 10.1016/j.maturitas.2016.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/14/2016] [Indexed: 12/27/2022]
Abstract
Five medical databases were searched for studies that assessed the role of ERβ in the female cardiovascular system and the influence of age and menopause on ERβ functioning. Of 9472 references, 88 studies met our inclusion criteria (71 animal model experimental studies, 15 human model experimental studies and 2 population based studies). ERβ signaling was shown to possess vasodilator and antiangiogenic properties by regulating the activity of nitric oxide, altering membrane ionic permeability in vascular smooth muscle cells, inhibiting vascular smooth muscle cell migration and proliferation and by regulating adrenergic control of the arteries. Also, a possible protective effect of ERβ signaling against left ventricular hypertrophy and ischemia/reperfusion injury via genomic and non-genomic pathways was suggested in 27 studies. Moreover, 5 studies reported that the vascular effects of ERβ may be vessel specific and may differ by age and menopause status. ERβ seems to possess multiple functions in the female cardiovascular system. Further studies are needed to evaluate whether isoform-selective ERβ-ligands might contribute to cardiovascular disease prevention.
Collapse
Affiliation(s)
- Taulant Muka
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.
| | - Kris G Vargas
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Loes Jaspers
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Ke-xin Wen
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Klodian Dhana
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Anna Vitezova
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Jana Nano
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Adela Brahimaj
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Veronica Colpani
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Arjola Bano
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Bledar Kraja
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands; Department of Biomedical Sciences, Faculty of Medicine, University of Medicine, Tirana, Albania; University Clinic of Gastrohepatology, University Hospital Center Mother Teresa, Tirana, Albania
| | - Asija Zaciragic
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Gaby M van Dijk
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
6
|
The ESR2 AluI 1730G>A (rs4986938) gene polymorphism is associated with fibrinogen plasma levels in postmenopausal women. Gene 2012; 508:206-10. [DOI: 10.1016/j.gene.2012.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/15/2012] [Accepted: 08/02/2012] [Indexed: 12/24/2022]
|
7
|
Wei G, Yao M, Wang Y, Zhou C, Wan D, Lei H, Dong D. Association of estrogen receptor alpha gene polymorphisms and risk of fracture. Genet Test Mol Biomarkers 2012; 16:636-9. [PMID: 22283119 DOI: 10.1089/gtmb.2011.0316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The association between estrogen receptor alpha (ESR1) gene polymorphisms and risk of fracture is still controversial and ambiguous. The objective of this study was to evaluate the effect of PvuII polymorphisms of the ESR1 gene on fracture risk in Chinese patients. A population-based control study of elderly subjects was conducted in 120 fracture patients and 120 controls. The PvuII pp genotype of the ESR1 gene was determined by using a polymerase chain reaction-restriction fragment length polymorphism assay. There was no relationship between ESR1 gene PvuII polymorphism and fracture risk. When stratifying by fracture type, it was found that vertebral fracture cases had a significantly higher frequency of the PvuII pp genotype (odds ratio=2.00, 95% confidence interval=1.03, 3.88; p=0.04) than controls. This study suggested that there was a modest but statistically significant association between the PvuII pp genotype of the ESR1 gene and vertebral fracture in Chinese patients. The molecular mechanism underlying this association needs further study.
Collapse
Affiliation(s)
- GuoJun Wei
- Department of Orthopedic, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | | | | | | | | | | | | |
Collapse
|