1
|
Gao B, Jiang Y, Han M, Ji X, Zhang D, Wu L, Gao X, Huang S, Zhao C, Su Y, Yang S, Zhang X, Liu N, Han L, Wang L, Ren L, Yang J, Wu J, Yuan Y, Dai P. Targeted Linked-Read Sequencing for Direct Haplotype Phasing of Parental GJB2/SLC26A4 Alleles: A Universal and Dependable Noninvasive Prenatal Diagnosis Method Applied to Autosomal Recessive Nonsyndromic Hearing Loss in At-Risk Families. J Mol Diagn 2024; 26:638-651. [PMID: 38663495 DOI: 10.1016/j.jmoldx.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/04/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024] Open
Abstract
Noninvasive prenatal diagnosis (NIPD) for autosomal recessive nonsyndromic hearing loss (ARNSHL) has been rarely reported until recent years. Additionally, the existing method can not be used for challenging genome loci (eg, copy number variations, deletions, inversions, or gene recombinants) or on families without proband genotype. This study assessed the performance of relative haplotype dosage analysis (RHDO)-based NIPD for identifying fetal genotyping in pregnancies at risk of ARNSHL. Fifty couples carrying pathogenic variants associated with ARNSHL in either GJB2 or SLC26A4 were recruited. The RHDO-based targeted linked-read sequencing combined with whole gene coverage probes was used to genotype the fetal cell-free DNA of 49 families who met the quality control standard. Fetal amniocyte samples were genotyped using invasive prenatal diagnosis (IPD) to assess the performance of NIPD. The NIPD results showed 100% (49/49) concordance with those obtained through IPD. Two families with copy number variation and recombination were also successfully identified. Sufficient specific informative single-nucleotide polymorphisms for haplotyping, as well as the fetal cell-free DNA concentration and sequencing depth, are prerequisites for RHDO-based NIPD. This method has the merits of covering the entire genes of GJB2 and SLC26A4, qualifying for copy number variation and recombination analysis with remarkable sensitivity and specificity. Therefore, it has clinical potential as an alternative to traditional IPD for ARNSHL.
Collapse
Affiliation(s)
- Bo Gao
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Yi Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Mingyu Han
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | | | - Dejun Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Lihua Wu
- Department of Otolaryngology, Fujian Medical University ShengLi Clinical College, Fujian Provincial Hospital, Fuzhou, China
| | - Xue Gao
- Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Shasha Huang
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Chaoyue Zhao
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Yu Su
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Suyan Yang
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Xin Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Na Liu
- MyGenostics Inc., Beijing, China
| | - Lu Han
- MyGenostics Inc., Beijing, China
| | | | - Lina Ren
- MyGenostics Inc., Beijing, China
| | - Jinyuan Yang
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Jian Wu
- MyGenostics Inc., Beijing, China
| | - Yongyi Yuan
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China.
| | - Pu Dai
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China.
| |
Collapse
|
2
|
Clausen FB. Antenatal RHD screening to guide antenatal anti-D immunoprophylaxis in non-immunized D- pregnant women. Immunohematology 2024; 40:15-27. [PMID: 38739027 DOI: 10.2478/immunohematology-2024-004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
In pregnancy, D- pregnant women may be at risk of becoming immunized against D when carrying a D+ fetus, which may eventually lead to hemolytic disease of the fetus and newborn. Administrating antenatal and postnatal anti-D immunoglobulin prophylaxis decreases the risk of immunization substantially. Noninvasive fetal RHD genotyping, based on testing cell-free DNA extracted from maternal plasma, offers a reliable tool to predict the fetal RhD phenotype during pregnancy. Used as a screening program, antenatal RHD screening can guide the administration of antenatal prophylaxis in non-immunized D- pregnant women so that unnecessary prophylaxis is avoided in those women who carry a D- fetus. In Europe, antenatal RHD screening programs have been running since 2009, demonstrating high test accuracies and program feasibility. In this review, an overview is provided of current state-of-the-art antenatal RHD screening, which includes discussions on the rationale for its implementation, methodology, detection strategies, and test performance. The performance of antenatal RHD screening in a routine setting is characterized by high accuracy, with a high diagnostic sensitivity of ≥99.9 percent. The result of using antenatal RHD screening is that 97-99 percent of the women who carry a D- fetus avoid unnecessary prophylaxis. As such, this activity contributes to avoiding unnecessary treatment and saves valuable anti-D immunoglobulin, which has a shortage worldwide. The main challenges for a reliable noninvasive fetal RHD genotyping assay are low cell-free DNA levels, the genetics of the Rh blood group system, and choosing an appropriate detection strategy for an admixed population. In many parts of the world, however, the main challenge is to improve the basic care for D- pregnant women.
Collapse
Affiliation(s)
- Frederik B Clausen
- Laboratory of Blood Genetics, Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
3
|
Kotsopoulou I, Tsoplou P, Mavrommatis K, Kroupis C. Non-invasive prenatal testing (NIPT): limitations on the way to become diagnosis. ACTA ACUST UNITED AC 2015. [PMID: 29540035 DOI: 10.1515/dx-2015-0002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
With the discovery of existing circulating cell-free fetal DNA (ccffDNA) in maternal plasma and the advent of next-generation sequencing (NGS) technology, there is substantial hope that prenatal diagnosis will become a predominately non-invasive process in the future. At the moment, non-invasive prenatal testing (NIPT) is available for high-risk pregnancies with significant better sensitivity and specificity than the other existing non-invasive methods (biochemical and ultrasonographical). Mainly it is performed by NGS methods in a few commercial labs worldwide. However, it is expected that many other labs will offer analogous services in the future in this fast-growing field with a multiplicity of in-house methods (e.g., epigenetic, etc.). Due to various limitations of the available methods and technologies that are explained in detail in this manuscript, NIPT has not become diagnostic yet and women may still need to undergo risky invasive procedures to verify a positive finding or to secure (or even expand) a negative one. Efforts have already started to make the NIPT technologies more accurate (even at the level of a complete fetal genome) and cheaper and thus more affordable, in order to become diagnostic screening tests for all pregnancies in the near future.
Collapse
Affiliation(s)
- Ioanna Kotsopoulou
- 1Department of Clinical Biochemistry, Attikon University General Hospital, University of Athens Medical School, Athens, Greece
| | | | | | - Christos Kroupis
- 1Department of Clinical Biochemistry, Attikon University General Hospital, University of Athens Medical School, Athens, Greece
| |
Collapse
|
4
|
Picchiassi E, Di Renzo GC, Tarquini F, Bini V, Centra M, Pennacchi L, Galeone F, Micanti M, Coata G. Non-Invasive Prenatal RHD Genotyping Using Cell-Free Fetal DNA from Maternal Plasma: An Italian Experience. Transfus Med Hemother 2014; 42:22-8. [PMID: 25960712 DOI: 10.1159/000370233] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/27/2014] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND This study assessed the diagnostic accuracy of a non-invasive approach to fetal RHD genotyping using cell-free fetal DNA in maternal plasma and a combination of methodological strategies. METHODS Real-time PCR (qPCR) was performed on 216 RhD-negative women between weeks 10+0 and 14+6 of gestation (1st qPCR). qPCR was repeated (2nd qPCR) to increase the amount of each sample for analysis, on 95 plasma aliquots that were available from first trimester blood collection (group 1) and on 13 samples that were collected between weeks 18+0 and 25+6 of gestation (group 2). qPCR was specific for exons 5 and 7 of the RHD gene (RHD5 and RHD7). The results were interpreted according to the number of positive replicates of both exons. RESULTS 1st qPCR: diagnostic accuracy was of 93.3%. Diagnostic accuracy increased from 90.5% (1st qPCR) to 93.7% (2nd qPCR) in group 1 and from 84.6% (1st qPCR) to 92.3% (2nd qPCR) in group 2. These increments were not statistically significant. CONCLUSION Our approach to RHD genotyping in early pregnancy yielded high diagnostic accuracy. Increasing the amount of DNA analyzed in each sample did not improve significantly the diagnostic accuracy of the test.
Collapse
Affiliation(s)
- Elena Picchiassi
- Department of Obstetrics and Gynecology, University Hospital of Perugia, Perugia, Italy
| | - Gian Carlo Di Renzo
- Department of Obstetrics and Gynecology, University Hospital of Perugia, Perugia, Italy
| | - Federica Tarquini
- Department of Obstetrics and Gynecology, University Hospital of Perugia, Perugia, Italy
| | - Vittorio Bini
- Department of Internal Medicine, University Hospital of Perugia, Perugia, Italy
| | - Michela Centra
- Department of Obstetrics and Gynecology, University Hospital of Perugia, Perugia, Italy
| | - Luana Pennacchi
- Department of Obstetrics and Gynecology, University Hospital of Perugia, Perugia, Italy
| | - Fabiana Galeone
- Department of Obstetrics and Gynecology, University Hospital of Perugia, Perugia, Italy
| | - Mara Micanti
- Department of Obstetrics and Gynecology, University Hospital of Perugia, Perugia, Italy
| | - Giuliana Coata
- Department of Obstetrics and Gynecology, University Hospital of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Shen J, Zhou C, Zhu S, Shi W, Hu M, Fu X, Wang C, Wang Y, Zhang Q, Yu Y. Comparative transcriptome analysis reveals early pregnancy-specific genes expressed in peripheral blood of pregnant sows. PLoS One 2014; 9:e114036. [PMID: 25479131 PMCID: PMC4257664 DOI: 10.1371/journal.pone.0114036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 11/03/2014] [Indexed: 01/11/2023] Open
Abstract
Early and accurate diagnosis of pregnancy is important for effective management of an economical pig farm. Besides the currently available methods used in early diagnosis of sows, circulating nucleic acids in peripheral blood may contain some early pregnancy-specific molecular markers. For the first time, microarray analysis of peripheral blood from pregnant sows versus non-pregnant sows identified 127 up-regulated and 56 down-regulated genes at day 14 post-insemination. Gene Ontology annotation grouped the total differently expressed genes into 3 significantly enriched terms, cell surface receptor linked signal transduction, G-protein coupled receptor protein signaling pathway and regulation of vesicle-mediated transport. Signaling pathway analysis revealed the only one significantly changed pathway was arachidonic acid metabolism. Of the differently expressed genes, nine (including LPAR3, RXFP4, GALP, CBR1, CBR2, GPX6, USP18, LHB and NR5A1) were found to exert function related to early pregnancy processes. This study provides a clue that differentially abundant RNAs in maternal peripheral blood can help to identify the molecular markers of early pregnancy in pigs.
Collapse
Affiliation(s)
- Junye Shen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agricultural, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Chuanli Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agricultural, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Shien Zhu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Wenqing Shi
- Animal Husbandry and Veterinary Station of Beijing, Beijing, P.R. China
| | - Maishun Hu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Xiangwei Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Chuduan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agricultural, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agricultural, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agricultural, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agricultural, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
6
|
Xiang Y, Zhang J, Li Q, Zhou X, Wang T, Xu M, Xia S, Xing Q, Wang L, He L, Zhao X. DNA methylome profiling of maternal peripheral blood and placentas reveal potential fetal DNA markers for non-invasive prenatal testing. Mol Hum Reprod 2014; 20:875-84. [PMID: 24996894 DOI: 10.1093/molehr/gau048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Utilizing epigenetic (DNA methylation) differences to differentiate between maternal peripheral blood (PBL) and fetal (placental) DNA has been a promising strategy for non-invasive prenatal testing (NIPT). However, the differentially methylated regions (DMRs) have yet to be fully ascertained. In the present study, we performed genome-wide comparative methylome analysis between maternal PBL and placental DNA from pregnancies of first trimester by methylated DNA immunoprecipitation-sequencing (MeDIP-Seq) and Infinium HumanMethylation450 BeadChip assays. A total of 36 931 DMRs and 45 804 differentially methylated sites (DMSs) covering the whole genome, exclusive of the Y chromosome, were identified via MeDIP-Seq and Infinium 450k array, respectively, of which 3759 sites in 2188 regions were confirmed by both methods. Not only did we find the previously reported potential fetal DNA markers in our identified DMRs/DMSs but also we verified fully the identified DMRs/DMSs in the validation round by MassARRAY EpiTYPER. The screened potential fetal DNA markers may be used for NIPT on aneuploidies and other chromosomal diseases, such as cri du chat syndrome and velo-cardio-facial syndrome. In addition, these potential markers may have application in the early diagnosis of placental dysfunction, such as pre-eclampsia.
Collapse
Affiliation(s)
- Yuqian Xiang
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Junyu Zhang
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Qiaoli Li
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xinyao Zhou
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Teng Wang
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Shihui Xia
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Qinghe Xing
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Lei Wang
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Lin He
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Xinzhi Zhao
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
7
|
Kyriakou S, Kypri E, Spyrou C, Tsaliki E, Velissariou V, Papageorgiou EA, Patsalis PC. Variability of ffDNA in maternal plasma does not prevent correct classification of trisomy 21 using MeDIP-qPCR methodology. Prenat Diagn 2013; 33:650-5. [DOI: 10.1002/pd.4140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Skevi Kyriakou
- The Cyprus Institute of Neurology and Genetics; Nicosia Cyprus
| | | | | | | | - Voula Velissariou
- Department of Genetics and Molecular Biology; Mitera Hospital; Athens Greece
| | | | | |
Collapse
|
8
|
Gahan PB. Circulating nucleic acids in plasma and serum: applications in diagnostic techniques for noninvasive prenatal diagnosis. Int J Womens Health 2013; 5:177-86. [PMID: 23637563 PMCID: PMC3634397 DOI: 10.2147/ijwh.s34442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The analysis of fetal nucleic acids in maternal blood 13 years ago has led to the initiation of noninvasive methods for the early determination of fetal gender, rhesus D status, and a number of aneuploid disorders and hemoglobinopathies. Subsequently, a comparatively large quantity of fetal DNA and RNA has been demonstrated in amniotic fluid as well as small amounts in premature infant saliva. The DNA and RNA in amniotic fluid has permitted an analysis of core transcriptomes, whilst the DNA and RNA in saliva allows the early detection and treatment monitoring of fetal developmental problems. These aspects are discussed together with the methodology and limits of analysis for noninvasive prenatal diagnosis in predictive, preventive, and personalized medicine.
Collapse
Affiliation(s)
- Peter B Gahan
- Anatomy and Human Sciences Department, King’s College London, London Bridge, London, UK
| |
Collapse
|
9
|
Galbiati S, Brisci A, Damin F, Gentilin B, Curcio C, Restagno G, Cremonesi L, Ferrari M. Fetal DNA in maternal plasma: a noninvasive tool for prenatal diagnosis of beta-thalassemia. Expert Opin Biol Ther 2012; 12 Suppl 1:S181-7. [DOI: 10.1517/14712598.2012.677428] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
The controversy about controls for fetal blood group genotyping by cell-free fetal DNA in maternal plasma. Curr Opin Hematol 2011; 18:467-73. [DOI: 10.1097/moh.0b013e32834bab2d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|