1
|
Tan WY, Sharma A, Das P, Ahuja N. Early Detection of Cancers in the Era of Precision Oncology. Curr Opin Oncol 2023; 35:115-124. [PMID: 36721896 DOI: 10.1097/cco.0000000000000931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW The increasing global incidence of cancer demands innovative cancer detection modalities. The current population-based early cancer detection approaches focus on several major types of cancers (breast, prostate, cervical, lung and colon) at their early stages, however, they generally do not target high-risk individuals at precancerous stages. RECENT FINDINGS Some cancers, such as pancreatic cancer, are challenging to detect in their early stages. Therefore, there is a pressing need for improved, accessible, noninvasive, and cost-effective early detection methods. Harnessing cell-free-based biomarker-driven strategies paves a new era of precision diagnosis for multicancer early detection. The majority of these tests are in the early stages and expensive, but these approaches are expected to become cost sensitive in the near future. SUMMARY This review provides an overview of early cancer detection strategies, highlighting the methods, challenges, and issues to be addressed to revolutionize and improve global early cancer detection.
Collapse
Affiliation(s)
| | - Anup Sharma
- Yale School of Medicine, Department of Surgery
| | | | - Nita Ahuja
- Yale School of Medicine, Department of Surgery
- Yale School of Medicine, Department of Pathology
- Yale School of Medicine, Biological and Biomedical Sciences Program (BBS), Yale University, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Recent advance in nucleic acid amplification-integrated methods for DNA methyltransferase assay. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
3
|
Feng Z, Oberije CJG, van de Wetering AJP, Koch A, Wouters KAD, Vaes N, Masclee AAM, Carvalho B, Meijer GA, Zeegers MP, Herman JG, Melotte V, van Engeland M, Smits KM. Lessons From a Systematic Literature Search on Diagnostic DNA Methylation Biomarkers for Colorectal Cancer: How to Increase Research Value and Decrease Research Waste? Clin Transl Gastroenterol 2022; 13:e00499. [PMID: 35584320 PMCID: PMC9236597 DOI: 10.14309/ctg.0000000000000499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/22/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To improve colorectal cancer (CRC) survival and lower incidence rates, colonoscopy and/or fecal immunochemical test screening are widely implemented. Although candidate DNA methylation biomarkers have been published to improve or complement the fecal immunochemical test, clinical translation is limited. We describe technical and methodological problems encountered after a systematic literature search and provide recommendations to increase (clinical) value and decrease research waste in biomarker research. In addition, we present current evidence for diagnostic CRC DNA methylation biomarkers. METHODS A systematic literature search identified 331 diagnostic DNA methylation marker studies published before November 2020 in PubMed, EMBASE, Cochrane Library, and Google Scholar. For 136 bodily fluid studies, extended data extraction was performed. STARD criteria and level of evidence were registered to assess reporting quality and strength for clinical translation. RESULTS Our systematic literature search revealed multiple issues that hamper the development of DNA methylation biomarkers for CRC diagnosis, including methodological and technical heterogeneity and lack of validation or clinical translation. For example, clinical translation and independent validation were limited, with 100 of 434 markers (23%) studied in bodily fluids, 3 of 434 markers (0.7%) translated into clinical tests, and independent validation for 92 of 411 tissue markers (22%) and 59 of 100 bodily fluids markers (59%). DISCUSSION This systematic literature search revealed that major requirements to develop clinically relevant diagnostic CRC DNA methylation markers are often lacking. To avoid the resulting research waste, clinical needs, intended biomarker use, and independent validation should be better considered before study design. In addition, improved reporting quality would facilitate meta-analysis, thereby increasing the level of evidence and enabling clinical translation.
Collapse
Affiliation(s)
- Zheng Feng
- Department of Pathology, GROW – School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands;
| | - Cary J. G. Oberije
- Department of Pathology, GROW – School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands;
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands;
| | - Alouisa J. P. van de Wetering
- Department of Pathology, GROW – School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands;
| | - Alexander Koch
- Department of Pathology, GROW – School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands;
| | - Kim. A. D. Wouters
- Department of Pathology, GROW – School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands;
| | - Nathalie Vaes
- Department of Pathology, GROW – School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands;
| | - Ad A. M. Masclee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands;
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands;
| | - Beatriz Carvalho
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands;
| | - Gerrit A. Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands;
| | - Maurice P. Zeegers
- Department of Complex Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands;
- Department of Complex Genetics, CAPHRI – Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, the Netherlands;
| | - James G. Herman
- Division of Hematology/Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Veerle Melotte
- Department of Pathology, GROW – School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands;
- Department of Clinical Genetics, Erasmus University Medical Center, University of Rotterdam, Rotterdam, the Netherlands;
| | - Manon van Engeland
- Department of Pathology, GROW – School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands;
| | - Kim M. Smits
- Department of Pathology, GROW – School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands;
- Division of Medical Oncology, Department of Internal Medicine, GROW – School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands.
| |
Collapse
|
4
|
Relation between expression of hMLH1 and p53 mRNA genes, in the feces of patients with colorectal carcinoma. Cross-sectional study. Ann Med Surg (Lond) 2022; 73:103237. [PMID: 35079371 PMCID: PMC8767297 DOI: 10.1016/j.amsu.2021.103237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 11/24/2022] Open
Abstract
Colorectal carcinoma (CRC) is one of the main public health problems. The mortality of CRC is about 8%. Early detection of CRC is very important to prevent death because this cancer could be cured through surgery if the diagnosis can be made as early as possible. Therefore screening strategy for early detection of CRC is critical in reducing mortality. Many investigations supporting the detection of CRC have been developed, including the fecal DNA mutation test using advanced cytological techniques. It is capable of assessing colonocytes for the presence of DNA, RNA, and protein as molecular biomarkers of neoplasia in CRC, including p53 and hMLH1. This study implemented observational approach with a cross-sectional study of the feces of patients with CRC regardless of the stage and grade. The purpose of this study was to determine the expression of the hMLH1 and p53 mRNA genes in the feces of 48 patients with CRC from two hospitals in Indonesia, Siloam Hospitals in Cikarang and Dr. Wahidin Sudirohusodo Hospital in Makassar. The results showed that all adenocarcinoma feces samples with various tumor stages and grades had excess mRNA expression (more than twice the normal amount in Fold Change units) for both the hMLH1 and p53 genes. The average expression of the hMLH1 mRNA gene was the highest at stage two and grade one, while the lowest was at stage four and grade three. In contrast, the average p53 mRNA gene expression was the highest at stage four and grade three, while the lowest was at stage two and grade one. The study suggested that there was a relation between and the expression of hMLH1 and p53 mRNA gene. We concluded that while both hMLH1 and p53 genes in patients’ feces with CRC were overexpressed, they did not significantly affect the grade of CRC. Relation of mRNA expression of hMLH1 and p53 gene in colorectal carcinoma patients feces. mRNA expression in feces colorectal carcinoma by RT-PCR examination. Gene hMLH1 and p53 in feces colorectal carcinoma patients.
Collapse
|
5
|
Enhanced chemiluminescence enzyme‐linked immunoassay for the determination of DNA methyltransferase 1 in human serum. LUMINESCENCE 2019; 34:368-374. [DOI: 10.1002/bio.3619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/12/2019] [Accepted: 01/30/2019] [Indexed: 12/16/2022]
|
6
|
Abstract
This study is to investigate the genomic methylation in cervical adenocarcinoma in Xinjiang, China, using the DNA methylation analysis chips.Methylation of 5 cases of cervical adenocarcinoma tissues and 5 cases of normal cervical tissues were analyzed by the Illumina 850K methylation chip. The genes with abnormal methylation modification were screened out and analyzed by the gene ontology (GO) functional annotation analysis. Enrichment analysis of kyoto encyclopedia of genes and genomes (KEGG) signal transduction pathways was also performed.Totally 4056 sites showed differential expression patterns in cervical adenocarcinoma tissues compared to normal cervical tissues, of which 3738 were hypermethylated, and 318 were hypomethylated. The distribution of these sites covered from the 1st to 22nd chromosomes. GO functional annotation analysis showed that the differentially expressed genes in cervical adenocarcinoma tissues were mainly involved in the processes of tumor growth, development, metabolism, ion transport, transcriptional regulation, cell division, cell cycle regulation, and signal transduction. KEGG signaling pathway analysis showed that the most significantly different signaling pathway was the neuroactive ligand-receptor interaction. Gene-net-work analysis suggested that CCND1, CTNNB1, MAPK10, and PRKCA were involved.Methylated genes are specifically expressed in cervical adenocarcinoma tissues in Xinjiang, China. Four of these genes (CCND1, CTNNB1, MAPK10, and PRKCA) with differential expression patterns may play important regulatory roles in cervical adenocarcinoma development through affecting the neuroactive ligand-receptor interaction.
Collapse
|
7
|
Abstract
Aflatoxin B1 (AFB1) is widely distributed in nature, especially in a variety of food commodities. It is confirmed to be the most toxic of all the aflatoxins. The toxicity of AFB1 has been well investigated, and it may result in severe health problems including carcinogenesis, mutagenesis, growth retardation, and immune suppression. Epigenetic modifications including DNA methylation, histone modifications and regulation of non-coding RNA play an important role in AFB1-induced disease and carcinogenesis. To better understand the evidence for AFB1-induced epigenetic alterations and the potential mechanisms of the toxicity of AFB1, we conducted a review of published studies of AFB1-induced epigenetic alterations.
Collapse
Affiliation(s)
- Yaqi Dai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, 100083, Beijing, China
| | - Boyang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Liye Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, 100083, Beijing, China.
| |
Collapse
|
8
|
Alexander M, Burch JB, Steck SE, Chen CF, Hurley TG, Cavicchia P, Shivappa N, Guess J, Zhang H, Youngstedt SD, Creek KE, Lloyd S, Jones K, Hébert JR. Case-control study of candidate gene methylation and adenomatous polyp formation. Int J Colorectal Dis 2017; 32:183-192. [PMID: 27771773 PMCID: PMC5288296 DOI: 10.1007/s00384-016-2688-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/12/2016] [Indexed: 02/04/2023]
Abstract
PURPOSE Colorectal cancer (CRC) is one of the most common and preventable forms of cancer but remains the second leading cause of cancer-related death. Colorectal adenomas are precursor lesions that develop in 70-90 % of CRC cases. Identification of peripheral biomarkers for adenomas would help to enhance screening efforts. This exploratory study examined the methylation status of 20 candidate markers in peripheral blood leukocytes and their association with adenoma formation. METHODS Patients recruited from a local endoscopy clinic provided informed consent and completed an interview to ascertain demographic, lifestyle, and adenoma risk factors. Cases were individuals with a histopathologically confirmed adenoma, and controls included patients with a normal colonoscopy or those with histopathological findings not requiring heightened surveillance (normal biopsy, hyperplastic polyp). Methylation-specific polymerase chain reaction was used to characterize candidate gene promoter methylation. Odds ratios (ORs) and 95 % confidence intervals (95% CIs) were calculated using unconditional multivariable logistic regression to test the hypothesis that candidate gene methylation differed between cases and controls, after adjustment for confounders. RESULTS Complete data were available for 107 participants; 36 % had adenomas (men 40 %, women 31 %). Hypomethylation of the MINT1 locus (OR 5.3, 95% CI 1.0-28.2) and the PER1 (OR 2.9, 95% CI 1.1-7.7) and PER3 (OR 11.6, 95% CI 1.6-78.5) clock gene promoters was more common among adenoma cases. While specificity was moderate to high for the three markers (71-97 %), sensitivity was relatively low (18-45 %). CONCLUSION Follow-up of these epigenetic markers is suggested to further evaluate their utility for adenoma screening or surveillance.
Collapse
Affiliation(s)
- M Alexander
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - J B Burch
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA.
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA.
- William Jennings Bryant Dorn Department of Veterans Affairs Medical Center, Columbia, SC, USA.
| | - S E Steck
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - C-F Chen
- Center for Molecular Studies, Greenwood Genetic Center, Greenwood, SC, USA
| | - T G Hurley
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
| | - P Cavicchia
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
- Division of Community Health Promotion, Florida Department of Health, Tallahassee, FL, USA
| | - N Shivappa
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - J Guess
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - H Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - S D Youngstedt
- College of Nursing and Health Innovation, College of Health Solutions, Arizona State University and Phoenix VA Health Care System, Phoenix, AZ, USA
| | - K E Creek
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - S Lloyd
- South Carolina Medical Endoscopy Center, and Department of Family Medicine, University of South Carolina School of Medicine, Columbia, SC, USA
| | - K Jones
- Center for Molecular Studies, Greenwood Genetic Center, Greenwood, SC, USA
| | - J R Hébert
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
- Department of Family and Preventive Medicine, School of Medicine, University of South Carolin, Columbia, SC, USA
| |
Collapse
|
9
|
Abstract
SUMMARYEpigenetic changes are present in all human cancers and are now known to cooperate with genetic alterations to drive the cancer phenotype. These changes involve DNA methylation, histone modifiers and readers, chromatin remodelers, microRNAs, and other components of chromatin. Cancer genetics and epigenetics are inextricably linked in generating the malignant phenotype; epigenetic changes can cause mutations in genes, and, conversely, mutations are frequently observed in genes that modify the epigenome. Epigenetic therapies, in which the goal is to reverse these changes, are now one standard of care for a preleukemic disorder and form of lymphoma. The application of epigenetic therapies in the treatment of solid tumors is also emerging as a viable therapeutic route.
Collapse
Affiliation(s)
- Stephen B Baylin
- Cancer Biology Program, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - Peter A Jones
- Van Andel Research Institute, Grand Rapids, Michigan 49503
| |
Collapse
|
10
|
Poh WJ, Wee CPP, Gao Z. DNA Methyltransferase Activity Assays: Advances and Challenges. Am J Cancer Res 2016; 6:369-91. [PMID: 26909112 PMCID: PMC4737724 DOI: 10.7150/thno.13438] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/12/2015] [Indexed: 12/28/2022] Open
Abstract
DNA methyltransferases (MTases), a family of enzymes that catalyse the methylation of DNA, have a profound effect on gene regulation. A large body of evidence has indicated that DNA MTase is potentially a predictive biomarker closely associated with genetic disorders and genetic diseases like cancer. Given the attention bestowed onto DNA MTases in molecular biology and medicine, highly sensitive detection of DNA MTase activity is essential in determining gene regulation, epigenetic modification, clinical diagnosis and therapeutics. Conventional techniques such as isotope labelling are effective, but they often require laborious sample preparation, isotope labelling, sophisticated equipment and large amounts of DNA, rendering them unsuitable for uses at point-of-care. Simple, portable, highly sensitive and low-cost assays are urgently needed for DNA MTase activity screening. In most recent technological advances, many alternative DNA MTase activity assays such as fluorescent, electrochemical, colorimetric and chemiluminescent assays have been proposed. In addition, many of them are coupled with nanomaterials and/or enzymes to significantly enhance their sensitivity. Herein we review the progress in the development of DNA MTase activity assays with an emphasis on assay mechanism and performance with some discussion on challenges and perspectives. It is hoped that this article will provide a broad coverage of DNA MTase activity assays and their latest developments and open new perspectives toward the development of DNA MTase activity assays with much improved performance for uses in molecular biology and clinical practice.
Collapse
|
11
|
Mokarram P, Kavousipour S, Sarabi MM, Mehrabani G, Fahmidehkar MA, Shamsdin SA, Alipour A, Naini MA. MGMT-B gene promoter hypermethylation in patients with inflammatory bowel disease - a novel finding. Asian Pac J Cancer Prev 2015; 16:1945-52. [PMID: 25773792 DOI: 10.7314/apjcp.2015.16.5.1945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a disease strongly associated with colorectal cancer (CRC) as a well-known precancerous condition. Alterations in DNA methylation and mutation in K-ras are believed to play an early etiopathogenic role in CRC and may also an initiating event through deregulation of molecular signaling. Epigenetic silencing of APC and SFRP2 in the WNT signaling pathway may also be involved in IBD-CRC. The role of aberrant DNA methylation in precancerous state of colorectal cancer (CRC) is under intensive investigation worldwide. The aim of this study was to investigate the status of promoter methylation of MGMT-B, APC1A and SFRP2 genes, in inflamed and normal colon tissues of patients with IBD compared with control normal tissues. A total of 52 IBD tissues as well as corresponding normal tissues and 30 samples from healthy participants were obtained. We determined promoter methylation status of MGMT-B, SFRP2 and APC1A genes by chemical treatment with sodium bisulfite and subsequent MSP. The most frequently methylated locus was MGMT-B (71%; 34 of 48), followed by SFRP2 (66.6 %; 32 of 48), and APC1A (43.7%; 21 of 48). Our study demonstrated for the first time that hypermethylation of the MGMT-B and the SFRP2 gene promoter regions might be involved in IBD development. Methylation of MGMT-B and SFRP2 in IBD patients may provide a method for early detection of IBD-associated neoplasia.
Collapse
Affiliation(s)
- Pooneh Mokarram
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran E-mail : ,
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sun Z, Cunningham J, Slager S, Kocher JP. Base resolution methylome profiling: considerations in platform selection, data preprocessing and analysis. Epigenomics 2015; 7:813-28. [PMID: 26366945 PMCID: PMC4790440 DOI: 10.2217/epi.15.21] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bisulfite treatment-based methylation microarray (mainly Illumina 450K Infinium array) and next-generation sequencing (reduced representation bisulfite sequencing, Agilent SureSelect Human Methyl-Seq, NimbleGen SeqCap Epi CpGiant or whole-genome bisulfite sequencing) are commonly used for base resolution DNA methylome research. Although multiple tools and methods have been developed and used for the data preprocessing and analysis, confusions remains for these platforms including how and whether the 450k array should be normalized; which platform should be used to better fit researchers' needs; and which statistical models would be more appropriate for differential methylation analysis. This review presents the commonly used platforms and compares the pros and cons of each in methylome profiling. We then discuss approaches to study design, data normalization, bias correction and model selection for differentially methylated individual CpGs and regions.
Collapse
Affiliation(s)
- Zhifu Sun
- Division of Biomedical Statistics & Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Susan Slager
- Division of Biomedical Statistics & Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jean-Pierre Kocher
- Division of Biomedical Statistics & Informatics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
13
|
Taleat Z, Mathwig K, Sudhölter EJ, Rassaei L. Detection strategies for methylated and hypermethylated DNA. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Fleischhacker M, Schmidt B. Extracellular Nucleic Acids and Cancer. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2015. [DOI: 10.1007/978-94-017-9168-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Mokarram P, Estiar MA, Ashktorab H. Methylation in Colorectal Cancer. EPIGENETICS TERRITORY AND CANCER 2015:373-455. [DOI: 10.1007/978-94-017-9639-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Cesaroni M, Powell J, Sapienza C. Validation of methylation biomarkers that distinguish normal colon mucosa of cancer patients from normal colon mucosa of patients without cancer. Cancer Prev Res (Phila) 2014; 7:717-26. [PMID: 24806665 DOI: 10.1158/1940-6207.capr-13-0407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have validated differences in DNA methylation levels of candidate genes previously reported to discriminate between normal colon mucosa of patients with colon cancer and normal colon mucosa of individuals without cancer. Here, we report that CpG sites in 16 of the 30 candidate genes selected show significant differences in mean methylation level in normal colon mucosa of 24 patients with cancer and 24 controls. A support vector machine trained on these data and data for an additional 66 CpGs yielded an 18-gene signature, composed of ten of the validated candidate genes plus eight additional candidates. This model exhibited 96% sensitivity and 100% specificity in a 40-sample training set and classified all eight samples in the test set correctly. Moreover, we found a moderate-strong correlation (Pearson coefficients r = 0.253-0.722) between methylation levels in colon mucosa and methylation levels in peripheral blood for seven of the 18 genes in the support vector model. These seven genes, alone, classified 44 of the 48 patients in the validation set correctly and five CpGs selected from only two of the seven genes classified 41 of the 48 patients in the discovery set correctly. These results suggest that methylation biomarkers may be developed that will, at minimum, serve as useful objective and quantitative diagnostic complements to colonoscopy as a cancer-screening tool. These data also suggest that it may be possible to monitor biomarker methylation levels in tissues collected much less invasively than by colonoscopy.
Collapse
Affiliation(s)
- Matteo Cesaroni
- Authors' Affiliations: Fels Institute for Cancer Research and Molecular Biology; and
| | - Jasmine Powell
- Authors' Affiliations: Fels Institute for Cancer Research and Molecular Biology; and
| | - Carmen Sapienza
- Authors' Affiliations: Fels Institute for Cancer Research and Molecular Biology; and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Li YX, Lu Y, Li CY, Yuan P, Lin SS. Role of CDH1 promoter methylation in colorectal carcinogenesis: a meta-analysis. DNA Cell Biol 2014; 33:455-62. [PMID: 24684676 DOI: 10.1089/dna.2013.2291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This meta-analysis was performed to evaluate the role of CDH1 promoter methylation in colorectal carcinogenesis. The PubMed, CISCOM, CINAHL, Web of Science, Google Scholar, EBSCO, Cochrane Library, and CBM databases were searched for relevant articles published before November 1st, 2013 without any language restrictions. Meta-analysis was conducted using the STATA 12.0 software. Crude odds ratios (ORs) with 95% confidence intervals (95% CIs) were calculated. Nine clinical cohort studies met all our inclusion criteria and were included in this meta-analysis. A total of 883 colorectal cancer (CRC) patients were assessed. Our meta-analysis results revealed that the frequencies of CDH1 promoter methylation in CRC tissues were higher than those in control tissues (OR=2.61, 95% CI=1.24-5.50, p=0.012). A subgroup analysis by ethnicity showed that CDH1 promoter methylation was closely linked to the pathogenesis of CRC among Asians and Africans (Asians: OR=2.90, 95% CI=1.26-6.67, p=0.012; Africans: OR=3.81, 95% CI=1.56-9.34, p=0.003; respectively), but not among Caucasians (OR=1.68, 95% CI=0.24-11.72, p=0.598). A further subgroup analysis by type of control tissues suggested that CRC tissues also exhibited higher frequencies of CDH1 promoter methylation than those of normal and adjacent tissues (normal: OR=1.57, 95% CI=1.12-2.21, p=0.009; adjacent: OR=5.07, 95% CI=2.91-8.82, p<0.001; respectively). However, we found no evidence for any significant difference in the frequencies of CDH1 promoter methylation between CRC tissues and adenomas tissues (OR=1.18, 95% CI=0.74-1.90, p=0.485). Our findings provide empirical evidence that CDH1 promoter methylation may play an important role in colorectal carcinogenesis. Thus, CDH1 promoter methylation may be a useful biomarker for the early diagnosis of CRC.
Collapse
Affiliation(s)
- Yu-Xi Li
- Department of Coloproctological, The Fourth Affiliated Hospital of China Medical University , Shenyang, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Chai XK, Ju HY, Bai WY. Relationship between methylation of tumor suppressor genes and colorectal cancer. Shijie Huaren Xiaohua Zazhi 2014; 22:1087-1092. [DOI: 10.11569/wcjd.v22.i8.1087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is ranked third both in incidence and mortality rate among malignant tumor diseases worldwide, posing a serious threat to human health. The improvement of people's living standards and changes in dietary habits and structure have led to a rapid increase in the incidence and mortality rate of colorectal cancer. The methylation of tumor suppressor genes (TSGs) participates in the genesis and progression of colorectal cancer and has become a hotspot in colorectal cancer research in recent years. Elucidation of the clinical significance of methylation of TSG can be helpful in the early screening and diagnosis, recurrence and metastasis monitoring, effective treatment, and evaluation of prognosis of this malignancy. This article reviews the recent progress in understanding the relationship between TSG methylation and colorectal cancer.
Collapse
|
19
|
August KJ, Chiang KY, Qayed M, Dulson A, Worthington-White D, Cole CR, Horan JT. Relative defects in mucosal immunity predict acute graft-versus-host disease. Biol Blood Marrow Transplant 2014; 20:1056-9. [PMID: 24641826 DOI: 10.1016/j.bbmt.2014.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/11/2014] [Indexed: 01/14/2023]
Abstract
Impairment of gut mucosal immunity by the transplant process could facilitate translocation of commensal bacteria and thereby augment the graft-versus-host response. To begin to assess the influence of gut mucosal immunity on the development of acute graft-versus-host disease (GVHD), we conducted a prospective study in 24 pediatric allogeneic hematopoietic cell transplant recipients, assessing 4 fecal markers of mucosal immunity: calprotectin, soluble CD8 (sCD8), soluble intracellular adhesion molecule 1, and β-defensin-2. Stool samples were collected prospectively on transplant days 0, +5, +10, and +15 and analyzed by ELISA. Lower levels on day +5 (calprotectin and β-defensin-2) and day +10 (calprotectin, β-defensin-2, and sCD8) were associated with subsequent acute GVHD. The most striking difference was with calprotectin on day +10. Patients with levels below 424 mg/kg had an incidence of 77.8%, whereas those with levels above this threshold had a cumulative incidence of 0% (P = .002). Relative defects in gut mucosal immunity may be important in the pathogenesis of acute GVHD.
Collapse
Affiliation(s)
- Keith J August
- Division of Pediatric Hematology-Oncology, Children's Mercy Hospitals and Clinics, Kansas City, Missouri
| | - K-Y Chiang
- Division of Pediatric Hematology-Oncology, Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Muna Qayed
- Division of Pediatric Hematology-Oncology, Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Ashley Dulson
- Division of Pediatric Hematology-Oncology, Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Diana Worthington-White
- Division of Pediatric Hematology-Oncology, Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Conrad R Cole
- Division of Pediatric Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - John T Horan
- Division of Pediatric Hematology-Oncology, Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia.
| |
Collapse
|