1
|
Wu K, Wang Y, Liu R, Wang H, Rui T. The role of mammalian Sirtuin 6 in cardiovascular diseases and diabetes mellitus. Front Physiol 2023; 14:1207133. [PMID: 37497437 PMCID: PMC10366693 DOI: 10.3389/fphys.2023.1207133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023] Open
Abstract
Cardiovascular diseases are severe diseases posing threat to human health because of their high morbidity and mortality worldwide. The incidence of diabetes mellitus is also increasing rapidly. Various signaling molecules are involved in the pathogenesis of cardiovascular diseases and diabetes. Sirtuin 6 (Sirt6), which is a class III histone deacetylase, has attracted numerous attentions since its discovery. Sirt6 enjoys a unique structure, important biological functions, and is involved in multiple cellular processes such as stress response, mitochondrial biogenesis, transcription, insulin resistance, inflammatory response, chromatin silencing, and apoptosis. Sirt6 also plays significant roles in regulating several cardiovascular diseases including atherosclerosis, coronary heart disease, as well as cardiac remodeling, bringing Sirt6 into the focus of clinical interests. In this review, we examine the recent advances in understanding the mechanistic working through which Sirt6 alters the course of lethal cardiovascular diseases and diabetes mellitus.
Collapse
|
2
|
Liu YP, Wen R, Liu CF, Zhang TN, Yang N. Cellular and molecular biology of sirtuins in cardiovascular disease. Biomed Pharmacother 2023; 164:114931. [PMID: 37263163 DOI: 10.1016/j.biopha.2023.114931] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
Sirtuins (SIRTs) are a nicotinic adenine dinucleotide (+) -dependent histone deacetylase that regulates critical signaling pathways in prokaryotes and eukaryotes. Studies have identified seven mammalian homologs of the yeast SIRT silencing message regulator 2, namely, SIRT1-SIRT7. Recent in vivo and in vitro studies have successfully demonstrated the involvement of SIRTs in key pathways for cell biological function in physiological and pathological processes of the cardiovascular system, including processes including cellular senescence, oxidative stress, apoptosis, DNA damage, and cellular metabolism. Emerging evidence has stimulated a significant evolution in preventing and treating cardiovascular disease (CVD). Here, we review the important roles of SIRTs for the regulatory pathways involved in the pathogenesis of cardiovascular diseases and their molecular targets, including novel protein post-translational modifications of succinylation. In addition, we summarize the agonists and inhibitors currently identified to target novel specific small molecules of SIRTs. A better understanding of the role of SIRTs in the biology of CVD opens new avenues for therapeutic intervention with great potential for preventing and treating CVD.
Collapse
Affiliation(s)
- Yong-Ping Liu
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China
| | - Ri Wen
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China
| | - Chun-Feng Liu
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China
| | - Tie-Ning Zhang
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Ni Yang
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| |
Collapse
|
3
|
Association of Sirtuin Gene Polymorphisms with Susceptibility to Coronary Artery Disease in a North Chinese Population. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4294008. [PMID: 35224092 PMCID: PMC8881115 DOI: 10.1155/2022/4294008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/31/2021] [Accepted: 01/15/2022] [Indexed: 12/17/2022]
Abstract
Aims Coronary artery disease (CAD) represents the leading cause of death worldwide. Accumulating evidence also suggests that sirtuins (SIRTS) have been associated with CAD. The present study was aimed at investigating the association between 12 gene polymorphisms for SIRTs and the development of CAD in a Chinese population. Materials and Methods 12 SNPs (rs12778366 (T > C), rs3758391 (T > C), rs3740051 (A > G), rs4746720 (C > T), rs7895833 (G > A), rs932658 (A > C) for SIRT1, rs2015 (G > T) for SIRT2, rs28365927 (G > A), rs11246020 (C > T) for SIRT3, rs350844 (G > A), rs350846 (G > C), and rs107251 (C > T) for SIRT6) were selected and assessed in a cohort of 509 CAD patients and 552 matched healthy controls for this study. Genomic DNA from whole blood was extracted, and the SNPs were assessed using MassARRAY method. Results TT genotype for rs3758391 and GG genotype for rs7895833 of SIRT1 were at higher risk of CAD, whereas the CC genotype for rs4746720 of SIRT1 was associated with a significantly decreased risk of CAD. The A allele of the rs28365927 of SIRT3 showed a significant decreased risk association with CAD patient group (P = 0.014). Significant difference in genotypes rs350844 (G > A) (P = 0.004), rs350846 (G > C) (P = 0.002), and rs107251 (C > T) (P ≤ 0.01) for SIRT6 was also found between the CAD patients and the healthy controls. Haplotype CTA significantly increased the risk of CAD (P = 0.000118, OR = 1.497, 95%CI = 1.218–1.840), while haplotype GCG significantly decreases the risk of CAD (P = 0.000414, OR = 1.131, 95%CI = 0.791–1.619). Conclusions The SNP rs28365927 in the SIRT3 gene and SNP rs350844, rs350846, and rs107251 in the SIRT6 gene present significant associations with CAD in a north Chinese population. Haplotype CTA and GCG generated by rs350846/rs107251/rs350844 in the SIRT6 might also increase and decrease the risk of CAD, respectively.
Collapse
|
4
|
Li X, Liu L, Li T, Liu M, Wang Y, Ma H, Mu N, Wang H. SIRT6 in Senescence and Aging-Related Cardiovascular Diseases. Front Cell Dev Biol 2021; 9:641315. [PMID: 33855020 PMCID: PMC8039379 DOI: 10.3389/fcell.2021.641315] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
SIRT6 belongs to the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases and has established diverse roles in aging, metabolism and disease. Its function is similar to the Silent Information Regulator 2 (SIR2), which prolongs lifespan and regulates genomic stability, telomere integrity, transcription, and DNA repair. It has been demonstrated that increasing the sirtuin level through genetic manipulation extends the lifespan of yeast, nematodes and flies. Deficiency of SIRT6 induces chronic inflammation, autophagy disorder and telomere instability. Also, these cellular processes can lead to the occurrence and progression of cardiovascular diseases (CVDs), such as atherosclerosis, hypertrophic cardiomyopathy and heart failure. Herein, we discuss the implications of SIRT6 regulates multiple cellular processes in cell senescence and aging-related CVDs, and we summarize clinical application of SIRT6 agonists and possible therapeutic interventions in aging-related CVDs.
Collapse
Affiliation(s)
- Xiaokang Li
- Department of Cardiology, China Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Liu
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Tian Li
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Manling Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Haiyan Wang
- Department of Cardiology, China Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Liu G, Chen H, Liu H, Zhang W, Zhou J. Emerging roles of SIRT6 in human diseases and its modulators. Med Res Rev 2021; 41:1089-1137. [PMID: 33325563 PMCID: PMC7906922 DOI: 10.1002/med.21753] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
The biological functions of sirtuin 6 (SIRT6; e.g., deacetylation, defatty-acylation, and mono-ADP-ribosylation) play a pivotal role in regulating lifespan and several fundamental processes controlling aging such as DNA repair, gene expression, and telomeric maintenance. Over the past decades, the aberration of SIRT6 has been extensively observed in diverse life-threatening human diseases. In this comprehensive review, we summarize the critical roles of SIRT6 in the onset and progression of human diseases including cancer, inflammation, diabetes, steatohepatitis, arthritis, cardiovascular diseases, neurodegenerative diseases, viral infections, renal and corneal injuries, as well as the elucidation of the related signaling pathways. Moreover, we discuss the advances in the development of small molecule SIRT6 modulators including activators and inhibitors as well as their pharmacological profiles toward potential therapeutics for SIRT6-mediated diseases.
Collapse
Affiliation(s)
- Gang Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Hua Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| |
Collapse
|
6
|
Saiyang X, Deng W, Qizhu T. Sirtuin 6: A potential therapeutic target for cardiovascular diseases. Pharmacol Res 2020; 163:105214. [PMID: 33007414 DOI: 10.1016/j.phrs.2020.105214] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/17/2020] [Indexed: 01/17/2023]
Abstract
Cardiovascular diseases (CVDs) are serious diseases endangering human health due to high morbidity and mortality worldwide, and numerous signal molecules are involved in this pathological process. As a member of the Sirtuin family NAD +-dependent deacetylases, indeed, Sirtuin 6 (SIRT6) plays an important role in regulating biological homeostasis, longevity, and various diseases. More importantly, SIRT6 performs as an indispensable role in glucose and lipid metabolism, inflammation and genomic stability for the occurrence and development of various CVDs. Recent advances: among sirtuins, SIRT6 was frequently unveiled thanks for its protective roles against heart failure, cardiovascular remodeling and atherosclerosis, and identified as an essential intervention target of CVDs, bringing SIRT6 into the focus of clinical interest. Herein, we provide an overview of the current molecular mechanism through which SIRT6 regulates CVDs, and we highlight a potential therapeutic target for CVDs.
Collapse
Affiliation(s)
- Xie Saiyang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| | - Tang Qizhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
7
|
Brozaitiene J, Skiriute D, Burkauskas J, Podlipskyte A, Jankauskiene E, Serretti A, Mickuviene N. Deiodinases, Organic Anion Transporter Polypeptide Polymorphisms, and Thyroid Hormones in Patients with Myocardial Infarction. Genet Test Mol Biomarkers 2018; 22:270-278. [DOI: 10.1089/gtmb.2017.0283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Julija Brozaitiene
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Palanga, Lithuania
| | - Daina Skiriute
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Julius Burkauskas
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Palanga, Lithuania
| | - Aurelija Podlipskyte
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Palanga, Lithuania
| | - Edita Jankauskiene
- Department of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Narseta Mickuviene
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Palanga, Lithuania
| |
Collapse
|
8
|
Ianni A, Yuan X, Bober E, Braun T. Sirtuins in the Cardiovascular System: Potential Targets in Pediatric Cardiology. Pediatr Cardiol 2018; 39:983-992. [PMID: 29497772 PMCID: PMC5958173 DOI: 10.1007/s00246-018-1848-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/24/2018] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases represent a major cause of death and morbidity. Cardiac and vascular pathologies develop predominantly in the aged population in part due to lifelong exposure to numerous risk factors but are also found in children and during adolescence. In comparison to adults, much has to be learned about the molecular pathways driving cardiovascular diseases in the pediatric population. Sirtuins are highly conserved enzymes that play pivotal roles in ensuring cardiac homeostasis under physiological and stress conditions. In this review, we discuss novel findings about the biological functions of these molecules in the cardiovascular system and their possible involvement in pediatric cardiovascular diseases.
Collapse
Affiliation(s)
- Alessandro Ianni
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Ludwig Strasse 43, 61231, Bad Nauheim, Germany.
| | - Xuejun Yuan
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Ludwig Strasse 43, 61231, Bad Nauheim, Germany
| | - Eva Bober
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Ludwig Strasse 43, 61231, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Ludwig Strasse 43, 61231, Bad Nauheim, Germany.
| |
Collapse
|
9
|
Yang W, Gao F, Zhang P, Pang S, Cui Y, Liu L, Wei G, Yan B. Functional genetic variants within the SIRT2 gene promoter in acute myocardial infarction. PLoS One 2017; 12:e0176245. [PMID: 28445509 PMCID: PMC5406008 DOI: 10.1371/journal.pone.0176245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Coronary artery disease (CAD), including acute myocardial infarction (AMI) is the complication of atherosclerosis. Recently, genome-wide association studies have identified a large number of CAD-related genetic variants. However, only 10% of CAD cases could be explained. Low frequent and rare genetic variants have been recently proposed to be main causes for CAD. SIRT2 is a member of sirtuin family, NAD(+)-dependent class III deacetylases. SIRT2 is involved in genomic stability, metabolism, inflammation, oxidative stress and autophagy, as well as in platelet function. Thus, we hypothesized that genetic variants in SIRT2 gene may contribute to AMI. In this study, SIRT2 gene promoter was analyzed in large cohorts of AMI patients (n = 375) and ethnic-matched controls (n = 377). Three novel heterozygous DSVs (g.38900888_91delTAAA, g.38900270A>G and g.38899853C>T) were identified in three AMI patients, but in none of controls. These DSVs significantly altered the transcriptional activity of the SIRT2 gene promoter (P<0.05) in both HEK-293 and H9c2 cells. Five novel heterozygous DSVS (g.38900562C>T, g.38900413A>C, g.38900030G>A, g.38899925A>C and g.38899852C>T) were only found in controls, which did not significantly affected SIRT2 gene promoter activity (P>0.05). In addition, four novel heterozygous DSVs and five SNPs were found in both AMI patients and control with similar frequencies (P>0.05), two SNPs of which were examined and did not affect SIRT2 gene promoter activity (P>0.05). Taken together, the DSVs identified in AMI patients may change SIRT2 level by affecting the transcriptional activity of SIRT2 gene promoter, contributing to the AMI development as a rare risk factor.
Collapse
Affiliation(s)
- Wentao Yang
- Department of Medicine, Shandong University School of Medicine, Jinan, Shandong, China
| | - Feng Gao
- Department of Medicine, Shandong University School of Medicine, Jinan, Shandong, China
| | - Pei Zhang
- College of Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yinghua Cui
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Lixin Liu
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Guanghe Wei
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- * E-mail:
| |
Collapse
|