1
|
Patil MN, Datkhile KD, Gudur AK, Gudur RA, Patil SR. Single-nucleotide polymorphism in CYP1A1, CYP1B1, CYP2B6, CYP2C8, and CYP2C9 genes and their association with gastrointestinal cancer: A hospital-based case-control study. J Cancer Res Ther 2024; 20:216-223. [PMID: 38554324 DOI: 10.4103/jcrt.jcrt_294_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/17/2022] [Indexed: 04/01/2024]
Abstract
BACKGROUND Cytochrome P450 (CYP) comprises a group of phase-I metabolizing enzymes that are important in xenobiotics metabolism. Genetic polymorphism of CYPs has been comprehensively studied for their association with a range of diseases. In this study, we assessed single-nucleotide polymorphism (SNP) of CYP1A, CYP1B, CYP2B, and CYP2C and their role in gastrointestinal (GI) cancer susceptibility in the rural population of Maharashtra. MATERIALS AND METHODS In this hospital-based case-control study, the association of polymorphism of CYP genes was studied by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The study subjects included 200 clinically confirmed GI cancer patients and equal number of healthy controls. Odds ratio (OR) with 95% confidence interval (CI) and P value were evaluated to find out the level of association, where P ≤ 0.005 was considered statistically significant. RESULTS After the analysis of CYP1A1*2A (rs4646903), CYP1B1*3 (rs1059836), CYP2B6*5 (rs3211371), CYP2C8*2 (rs11572103), CYP2C9*2 (rs1799853), and CYP2C9*3 (rs1057910), we noticed that variant (T) allele of CYP2B6*5 possessed significantly elevated risk (OR = 4.43; 95% CI: 2.20-8.90; P < 0.0001) of GI cancer in studied population. The genotypic distribution of G/C heterozygote allele of CYP1B1*3 (OR = 0.19, 95% CI = 0.12-0.32; P < 0.0001) and homozygous variant C/C allele (OR = 0.24, 95% CI = 0.13-0.45; P < 0.0001) showed a negative association with the development of GI cancer. CONCLUSION The findings from this study supported that polymorphism of CYP2B6*5gene may be involved in the development of GI cancer. However, other SNPs of CYP1A, CYP1B, and CYP2C genes did not signify the risk for GI cancer in the studied population of rural Maharashtra.
Collapse
Affiliation(s)
- Madhavi N Patil
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Satara, Maharashtra, India
| | - Kailas D Datkhile
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Satara, Maharashtra, India
| | - Anand K Gudur
- Department of Oncology, Krishna Institute of Medical Sciences "Deemed to be University", Satara, Maharashtra, India
| | - Rashmi A Gudur
- Department of Oncology, Krishna Institute of Medical Sciences "Deemed to be University", Satara, Maharashtra, India
| | - Satish R Patil
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Satara, Maharashtra, India
| |
Collapse
|
2
|
Kukal S, Thakran S, Kanojia N, Yadav S, Mishra MK, Guin D, Singh P, Kukreti R. Genic-intergenic polymorphisms of CYP1A genes and their clinical impact. Gene 2023; 857:147171. [PMID: 36623673 DOI: 10.1016/j.gene.2023.147171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
The humancytochrome P450 1A (CYP1A) subfamily genes, CYP1A1 and CYP1A2, encoding monooxygenases are critically involved in biotransformation of key endogenous substrates (estradiol, arachidonic acid, cholesterol) and exogenous compounds (smoke constituents, carcinogens, caffeine, therapeutic drugs). This suggests their significant involvement in multiple biological pathways with a primary role of maintaining endogenous homeostasis and xenobiotic detoxification. Large interindividual variability exist in CYP1A gene expression and/or catalytic activity of the enzyme, which is primarily due to the existence of polymorphic alleles which encode them. These polymorphisms (mainly single nucleotide polymorphisms, SNPs) have been extensively studied as susceptibility factors in a spectrum of clinical phenotypes. An in-depth understanding of the effects of polymorphic CYP1A genes on the differential metabolic activity and the resulting biological pathways is needed to explain the clinical implications of CYP1A polymorphisms. The present review is intended to provide an integrated understanding of CYP1A metabolic activity with unique substrate specificity and their involvement in physiological and pathophysiological roles. The article further emphasizes on the impact of widely studied CYP1A1 and CYP1A2 SNPs and their complex interaction with non-genetic factors like smoking and caffeine intake on multiple clinical phenotypes. Finally, we attempted to discuss the alterations in metabolism/physiology concerning the polymorphic CYP1A genes, which may underlie the reported clinical associations. This knowledge may provide insights into the disease pathogenesis, risk stratification, response to therapy and potential drug targets for individuals with certain CYP1A genotypes.
Collapse
Affiliation(s)
- Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarita Thakran
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saroj Yadav
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Pooja Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Xu T, Li X, Leng T, Zhuang T, Sun Y, Tang Y, Wang L, Yang M, Ji M. CYP2A13 Acts as the Main Metabolic CYP450s Enzyme for Activating Leonurine in Human Bronchial Epithelial Cells. Med Sci Monit 2020; 26:e922149. [PMID: 32284524 PMCID: PMC7174896 DOI: 10.12659/msm.922149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Leonurine is an active component of the traditional Chinese medicine Leonurus japonicus. This study aimed to investigate the effects of overexpressed CYP450s on the metabolic activity of leonurine. Material/Methods BEAS-2B cells stably expressing CYP1A1, 1A2, 2A13, 2B6, and 3A4 were constructed. CYP450s expression was identified using reverse-transcription PCR and Western blot assay. CCK-8 assay was used to evaluate the effect of leonurine on cell activity. Leonurine was incubated in vitro with CYP1A1, 1A2, 2A13, 2B6, and 3A4 metabolic enzymes to evaluate the clearance rate of CYP450 enzymes for leonurine. UPLC-MS was used to detect changes of drug concentration and discover the main metabolic enzymes affecting leonurine. Results BEAS-2B cells stably expressing CYP1A1, 1A2, 2A13, 2B6, and 3A4 were successfully constructed. According to primary mass spectra and secondary mass spectra of leonurine, the main metabolic enzymes were 312.1550 [H+] and 181.0484. Compared to the control group, residue of leonurine in CYP2A13 group was significantly reduced (F=5.307, p=0.024). Compared to the 0-min group, the clearance rate of leonurine in the CYP2A13-treated group was significantly decreased at 120 min after treatment (F=7.273, p=0.007). CCK-8 results also showed that activity of BEAS-2B cells that overexpress CYP2A13 gradually decreased with increased concentration of leonurine. Although CYP2A13 demonstrated good metabolic activity for leonurine, we found that CYP1A1, 1A2, 2B6, and 3A4 had no metabolic effects on leonurine. Conclusions Leonurine can be effectively activated through CYP2A13 enzyme metabolism, and further inhibits activity of human lung epithelial cells (BEAS-2B). Therefore, CYP2A13 is a main metabolic enzyme for leonurine in BEAS-2B cells.
Collapse
Affiliation(s)
- Ting Xu
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Xuxu Li
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Tian Leng
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Tianchi Zhuang
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yan Sun
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yajun Tang
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Li Wang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Muyi Yang
- Department of Obstetrics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
4
|
Kamiza AB, You JF, Wang WC, Tang R, Chang CY, Chien HT, Lai CH, Chiu LL, Lo TP, Hung KY, Hsiung CA, Yeh CC. Polymorphisms of xenobiotic-metabolizing genes and colorectal cancer risk in patients with lynch syndrome: A retrospective cohort study in Taiwan. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:69-78. [PMID: 28714190 DOI: 10.1002/em.22113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/13/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Cytochrome P450 (CYP), glutathione-S-transferase (GST), and N-acetyltransferase (NAT) are crucial for metabolism and clearance of xenobiotics. This study investigated whether CYP, GST, and NAT single nucleotide polymorphisms (SNPs) are associated with colorectal cancer (CRC) in patients with Lynch syndrome. The interaction between these SNPs and cigarette smoking or meat consumption was also explored. We identified 270 patients with Lynch syndrome from the Taiwan Hereditary Nonpolyposis Colorectal Cancer Consortium. A weighted Cox proportional hazard model was used to calculate the hazard ratios (HRs) and 95% confidence interval (CIs). The GSTA1 rs3957356 TT (HR = 5.36, 95% CI = 2.39-12.0) and CYP1B1 rs1056836 CC (HR = 7.24, 95% CI = 3.51-14.9) were significantly associated with CRC risk when compared to wild-type CC and GG genotypes, respectively. However, the CYP1A1 rs4646903 CC genotype significantly reduced the risk of CRC (HR = 0.33, 95% CI = 0.12-0.89) when compared to TT genotype. Moreover, significant interactions were observed between NAT1 acetylation and CYP1B1 rs1056827 and meat consumption.Our results suggest that xenobiotic-metabolizing SNPs are not only associated with CRC risk in patients with Lynch syndrome in Taiwan but also interact with meat consumption to modify the disease risk. Environ. Mol. Mutagen. 59:69-78, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abram Bunya Kamiza
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Jeng-Fu You
- Colorectal Section, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Chang Wang
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Reiping Tang
- Colorectal Section, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Yu Chang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Huei-Tzu Chien
- Department of Public Health, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Hsiung Lai
- Department of Public Health, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Ling Chiu
- Department of Public Health, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Tsai-Ping Lo
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Kuan-Yi Hung
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chao A Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-Ching Yeh
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Department of Public Health, China Medical University, Taichung, Taiwan
| |
Collapse
|