1
|
Sabui S, Anthonymuthu S, Ramamoorthy K, Skupsky J, Jennings TSK, Rahmatpanah F, Fleckenstein JM, Said HM. Effect of knocking out mouse Slc44a4 on colonic uptake of the microbiota-generated thiamine pyrophosphate and colon physiology. Am J Physiol Gastrointest Liver Physiol 2024; 327:G36-G46. [PMID: 38713615 PMCID: PMC11376973 DOI: 10.1152/ajpgi.00065.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
Humans and mammals obtain vitamin B1 from dietary and gut microbiota sources. A considerable amount of the microbiota-generated vitamin exists in the form of thiamine pyrophosphate (TPP), and colonocytes are capable of absorbing TPP via a specific carrier-mediated process that involves the colonic TPP transporter (cTPPT encoded by SLC44A4). Little is known about the relative contribution of the SLC44A4 transporter toward total colonic carrier-mediated TPP uptake and its role in colon physiology. To address these issues, we generated an Slc44a4 knockout (KO) mouse model (by Cre-Lox recombination) and found a near-complete inhibition in colonic carrier-mediated [3H]TPP uptake in the Slc44a4 KO compared with wild-type (WT) littermates. We also observed a significant reduction in KO mice's body weight and a shortening of their colon compared with WT. Using RNAseq and Ingenuity pathway analysis (IPA) approaches, we found that knocking out the colonic Slc44a4 led to changes in the level of expression of many genes, including upregulation in those associated with intestinal inflammation and colitis. Finally, we found that the Slc44a4 KO mice were more susceptible to the effect of the colitogenic dextran sodium sulfate (DSS) compared with WT animals, a finding that lends support to the recent prediction by multiple genome-wide association studies (GWAS) that SLC44A4 is a possible colitis susceptibility gene. In summary, the results of these investigations show that Slc44a4 is the predominant or only transporter involved in the colonic uptake of TPP, that the transporter is important for colon physiology, and that its deletion increases susceptibility to inflammation.NEW & NOTEWORTHY This study shows that Slc44a4 is the predominant or only transport system involved in the uptake of the gut microbiota-generated thiamine pyrophosphate (TPP) in the colon and that its deletion affects colon physiology and increases its susceptibility to inflammation.
Collapse
Affiliation(s)
- Subrata Sabui
- Department of Physiology and Biophysics, University of California, Irvine, California, United States
- Veterans Affairs Medical Center, Long Beach, California, United States
| | - Selvaraj Anthonymuthu
- Department of Physiology and Biophysics, University of California, Irvine, California, United States
| | - Kalidas Ramamoorthy
- Department of Physiology and Biophysics, University of California, Irvine, California, United States
| | - Jonathan Skupsky
- Veterans Affairs Medical Center, Long Beach, California, United States
- Department of Medicine, University of California, Irvine, California, United States
| | - Tara Sinta Kartika Jennings
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, United States
| | - Farah Rahmatpanah
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, United States
| | - James M Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Veterans Affairs Medical Center, St. Louis, Missouri, United States
| | - Hamid M Said
- Department of Physiology and Biophysics, University of California, Irvine, California, United States
- Veterans Affairs Medical Center, Long Beach, California, United States
- Department of Medicine, University of California, Irvine, California, United States
| |
Collapse
|
2
|
Anthonymuthu S, Sabui S, Sheikh A, Fleckenstein JM, Said HM. Tumor necrosis factor α impedes colonic thiamin pyrophosphate and free thiamin uptake: involvement of JNK/ERK 1/2-mediated pathways. Am J Physiol Cell Physiol 2022; 323:C1664-C1680. [PMID: 36342158 PMCID: PMC9744649 DOI: 10.1152/ajpcell.00458.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
The aim of this study was to examine the effect of TNFα (i.e., a predominant proinflammatory cytokine produced during chronic gut inflammation) on colonic uptake of thiamin pyrophosphate (TPP) and free thiamin, forms of vitamin B1 that are produced by the gut microbiota and are absorbed via distinct carrier-mediated systems. We utilized human-derived colonic epithelial CCD841 and NCM460 cells, human differentiated colonoid monolayers, and mouse intact colonic tissue preparations together with an array of cellular/molecular approaches in our investigation. The results showed that exposure of colonic epithelial cells to TNFα leads to a significant inhibition in TPP and free thiamin uptake. This inhibition was associated with: 1) a significant suppression in the level of expression of the colonic TPP transporter (cTPPT; encoded by SLC44A4), as well as thiamin transporters-1 & 2 (THTR-1 & -2; encoded by SLC19A2 & SLC19A3, respectively); 2) marked inhibition in activity of the SLC44A4, SLC19A2, and SLC19A3 promoters; and 3) significant suppression in level of expression of nuclear factors that are needed for activity of these promoters (i.e., CREB-1, Elf-3, NF-1A, SP-1). Furthermore, the inhibitory effects were found to be mediated via JNK and ERK1/2 signaling pathways. We also examined the level of expression of cTPPT and THTR-1 & -2 in colonic tissues of patients with active ulcerative colitis and found the levels to be significantly lower than in healthy controls. These findings demonstrate that exposure of colonocytes to TNFα suppresses TPP and free thiamin uptake at the transcriptional level via JNK- and Erk1/2-mediated pathways.
Collapse
Affiliation(s)
- Selvaraj Anthonymuthu
- Department of Physiology and Biophysics, University of California, Irvine, California
| | - Subrata Sabui
- Department of Physiology and Biophysics, University of California, Irvine, California
- Department of Medicine, University of California, Irvine, California
- Department of Medical Research, VA Medical Center, Long Beach, California
| | - Alaullah Sheikh
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - James M Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Veterans Affairs Medical Center, St. Louis, Missouri
| | - Hamid M Said
- Department of Physiology and Biophysics, University of California, Irvine, California
- Department of Medicine, University of California, Irvine, California
- Department of Medical Research, VA Medical Center, Long Beach, California
| |
Collapse
|
3
|
Li T, Li H, Li Y, Dong SA, Yi M, Zhang QX, Feng B, Yang L, Shi FD, Yang CS. Multi-Level Analyses of Genome-Wide Association Study to Reveal Significant Risk Genes and Pathways in Neuromyelitis Optica Spectrum Disorder. Front Genet 2021; 12:690537. [PMID: 34367251 PMCID: PMC8335167 DOI: 10.3389/fgene.2021.690537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disease of the central nervous system and it is understandable that environmental and genetic factors underlie the etiology of NMOSD. However, the susceptibility genes and associated pathways of NMOSD patients who are AQP4-Ab positive and negative have not been elucidated. Methods Secondary analysis from a NMOSD Genome-wide association study (GWAS) dataset originally published in 2018 (215 NMOSD cases and 1244 controls) was conducted to identify potential susceptibility genes and associated pathways in AQP4-positive and negative NMOSD patients, respectively (132 AQP4-positive and 83 AQP4-negative). Results In AQP4-positive NMOSD cases, five shared risk genes were obtained at chromosome 6 in AQP4-positive NMOSD cases by using more stringent p-Values in both methods (p < 0.05/16,532), comprising CFB, EHMT2, HLA-DQA1, MSH5, and SLC44A4. Fifty potential susceptibility gene sets were determined and 12 significant KEGG pathways were identified. Sixty-seven biological process pathways, 32 cellular-component pathways, and 29 molecular-function pathways with a p-Value of <0.05 were obtained from the GO annotations of the 128 pathways identified. In the AQP4 negative NMOSD group, no significant genes were obtained by using more stringent p-Values in both methods (p < 0.05/16,485). The 22 potential susceptibility gene sets were determined. There were no shared potential susceptibility genes between the AQP4-positive and negative groups, furthermore, four significant KEGG pathways were also identified. Of the GO annotations of the 165 pathways identified, 99 biological process pathways, 37 cellular-component pathways, and 29 molecular-function pathways with a p-Value of <0.05 were obtained. Conclusion The potential molecular mechanism underlying NMOSD may be related to proteins encoded by these novel genes in complements, antigen presentation, and immune regulation. The new results may represent an improved comprehension of the genetic and molecular mechanisms underlying NMOSD.
Collapse
Affiliation(s)
- Ting Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - He Li
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yue Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shu-An Dong
- Department of Anesthesiology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin, China
| | - Ming Yi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiu-Xia Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Feng
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Chun-Sheng Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Sabui S, Romero JM, Said HM. Developmental maturation of the colonic uptake process of the microbiota-generated thiamin pyrophosphate. Am J Physiol Gastrointest Liver Physiol 2021; 320:G829-G835. [PMID: 33759569 PMCID: PMC8202194 DOI: 10.1152/ajpgi.00067.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The water-soluble vitamin B1 is essential for normal human health and physiology. In its main biologically active form, i.e., thiamin pyrophosphate (TPP), the vitamin plays many critical roles in cell metabolism; thus, its deficiency leads to a variety of adverse effects. Humans/mammals obtain vitamin B1 from two exogenous sources: diet and gut microbiota. Considerable amount of the microbiota-generated vitamin B1 exists in the form of TPP, and colonocytes can efficiently absorb this TPP via a high-affinity and specific carrier-mediated mechanism that involves the recently cloned colonic TPP transporter (cTPPT; product of SLC44A4 gene). There is nothing currently known about colonic uptake of TPP during early stages of life and whether the process undergoes developmental regulation. We addressed this issue using the mouse as animal model. Our results showed that colonic uptake of TPP undergoes developmental upregulation as the animal moves from the suckling period to weanling and adulthood. This upregulation in uptake was found to be associated with a parallel induction in level of expression of the cTPPT protein, mRNA, and heterogeneous nuclear RNA, suggesting possible involvement of transcriptional mechanism(s). We also found a parallel upregulation in the level of expression of the two nuclear factors that drive activity of the SLC44A4 promoter (i.e., CREB-1 and Elf-3) with maturation. These results demonstrate, for the first time, to our knowledge, that colonic TPP uptake process and cTPPT expression are developmentally upregulated and that this upregulation is likely driven via transcriptional mechanism(s).NEW & NOTEWORTHY The colonic carrier-mediated uptake process of the microbiota-generated and phosphorylated form of vitamin B1, i.e., thiamin pyrophosphate, undergoes ontogenic changes that parallel the development of the gut microbiota (and their ability to generate vitamins) during early stages of life.
Collapse
Affiliation(s)
- Subrata Sabui
- 1Department of Physiology/Biophysics, University of California, Irvine, California,3VA Medical Center, Long Beach, California
| | - Jose M. Romero
- 1Department of Physiology/Biophysics, University of California, Irvine, California
| | - Hamid M. Said
- 1Department of Physiology/Biophysics, University of California, Irvine, California,2Department of Medicine, University of California, Irvine, California,3VA Medical Center, Long Beach, California
| |
Collapse
|