1
|
Ren N, Lv S, Li X, Shao C, Wang Z, Mei Y, Yang W, Fu W, Hu Y, Sha L, Hu W, Zhang Z, Wang C. Clinical features, treatment, and follow-up of OPPG and high-bone-mass disorders: LRP5 is a key regulator of bone mass. Osteoporos Int 2024; 35:1395-1406. [PMID: 38625381 PMCID: PMC11281985 DOI: 10.1007/s00198-024-07080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/30/2024] [Indexed: 04/17/2024]
Abstract
Osteoporosis-pseudoglioma syndrome (OPPG) and LRP5 high bone mass (LRP5-HBM) are two rare bone diseases with opposite clinical symptoms caused by loss-of-function and gain-of-function mutations in LRP5. Bisphosphonates are an effective treatment for OPPG patients. LRP5-HBM has a benign course, and age-related bone loss is found in one LRP5-HBM patient. PURPOSE Low-density lipoprotein receptor-related protein 5 (LRP5) is involved in the canonical Wnt signaling pathway. The gain-of-function mutation leads to high bone mass (LRP5-HBM), while the loss-of-function mutation leads to osteoporosis-pseudoglioma syndrome (OPPG). In this study, the clinical manifestations, disease-causing mutations, treatment, and follow-up were summarized to improve the understanding of these two diseases. METHODS Two OPPG patients and four LRP5-HBM patients were included in this study. The clinical characteristics, biochemical and radiological examinations, pathogenic mutations, and structural analysis were summarized. Furthermore, several patients were followed up to observe the treatment effect and disease progress. RESULTS Congenital blindness, persistent bone pain, low bone mineral density (BMD), and multiple brittle fractures were the main clinical manifestations of OPPG. Complex heterozygous mutations were detected in two OPPG patients. The c.1455G > T mutation in exon 7 was first reported. During the follow-up, BMD of two patients was significantly improved after bisphosphonate treatment. On the contrary, typical clinical features of LRP5-HBM included extremely high BMD without fractures, torus palatinus and normal vision. X-ray showed diffuse osteosclerosis. Two heterozygous missense mutations were detected in four patients. In addition, age-related bone loss was found in one LRP5-HBM patient after 12-year of follow-up. CONCLUSION This study deepened the understanding of the clinical characteristics, treatment, and follow-up of OPPG and LRP5-HBM; expanded the pathogenic gene spectrum of OPPG; and confirmed that bisphosphonates were effective for OPPG. Additionally, it was found that Ala242Thr mutation could not protect LRP5-HBM patients from age-related bone loss. This phenomenon deserves further study.
Collapse
Affiliation(s)
- Na Ren
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Shanshan Lv
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Xiang Li
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Chong Shao
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Ziyuan Wang
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Yazhao Mei
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Wendi Yang
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Wenzhen Fu
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Yunqiu Hu
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Ling Sha
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Weiwei Hu
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China.
| | - Chun Wang
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China.
| |
Collapse
|
2
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
3
|
Littman J, Yang W, Olansen J, Phornphutkul C, Aaron RK. LRP5, Bone Mass Polymorphisms and Skeletal Disorders. Genes (Basel) 2023; 14:1846. [PMID: 37895195 PMCID: PMC10606254 DOI: 10.3390/genes14101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
The formation and maintenance of the gross structure and microarchitecture of the human skeleton require the concerted functioning of a plethora of morphogenic signaling processes. Through recent discoveries in the field of genetics, numerous genotypic variants have been implicated in pathologic skeletal phenotypes and disorders arising from the disturbance of one or more of these processes. For example, total loss-of-function variants of LRP5 were found to be the cause of osteoporosis-pseudoglioma syndrome (OPPG). LRP5 encodes for the low-density lipoprotein receptor-related protein 5, a co-receptor in the canonical WNT-β-catenin signaling pathway and a crucial protein involved in the formation and maintenance of homeostasis of the human skeleton. Beyond OPPG, other partial loss-of-function variants of LRP5 have been found to be associated with other low bone mass phenotypes and disorders, while LRP5 gain-of-function variants have been implicated in high bone mass phenotypes. This review introduces the roles that LRP5 plays in skeletal morphogenesis and discusses some of the structural consequences that result from abnormalities in LRP5. A greater understanding of how the LRP5 receptor functions in bone and other body tissues could provide insights into a variety of pathologies and their potential treatments, from osteoporosis and a variety of skeletal abnormalities to congenital disorders that can lead to lifelong disabilities.
Collapse
Affiliation(s)
- Jake Littman
- Department of Orthopedic Surgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wentian Yang
- Department of Orthopedic Surgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Jon Olansen
- Department of Orthopedic Surgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Chanika Phornphutkul
- Division of Human Genetics, Department of Pediatrics, Hasbro Children’s Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Roy K. Aaron
- Department of Orthopedic Surgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
4
|
Heidari A, Homaei A, Saffari F. Novel Homozygous Nonsense Mutation in the LRP5 Gene in Two Siblings with Osteoporosis-pseudoglioma Syndrome. J Clin Res Pediatr Endocrinol 2023; 15:318-323. [PMID: 34965700 PMCID: PMC10448547 DOI: 10.4274/jcrpe.galenos.2021.2021.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022] Open
Abstract
Osteoporosis-pseudoglioma syndrome (OPPG) is a rare autosomal recessive disorder characterized by severe osteoporosis and eye abnormalities that lead to vision loss. In this study, clinical findings and genetic study of two siblings with OPPG are presented. Whole exome sequencing of DNA enriched for exonic regions was performed with SureSelect 38Mbp all exon kit v. 7.0. The two siblings presented with different clinical manifestations of OPPG. The younger female sibling had blindness and severe osteoporosis with multiple fractures, while her older brother was also blind but with less severe osteoporosis and no fractures. On analysis, a novel homozygous nonsense mutation (c.351G>A) in exon 2 of LRP5 (NM_002335) was found, predicted to change a tryptophan at 117 to a stop codon (p. Trp117Ter). Thus, a variable phenotype was associated with an identical variant in these two siblings. The novel mutation reported herein expands the spectrum of the underlying genetic pathology of OPPG.
Collapse
Affiliation(s)
- Abolfazl Heidari
- Reference Laboratory of Qazvin Medical University, Iran Sana Medical Genetics Laboratory, Qazvin, Iran
| | - Ali Homaei
- Shahid Beheshti University of Medical Sciences, Department of General Surgery, Tehran, Iran
| | - Fatemeh Saffari
- Qazvin University of Medical Sciences, Children Growth Research Center, Research Institute for Prevention of Non-Communicable Diseases, Department of Pediatric Endocrinology, Qazvin, Iran
| |
Collapse
|
5
|
Wang QF, Bi HS, Qin ZL, Wang P, Nie FF, Zhang GW. Associations of LRP5 Gene With Bone Mineral Density, Bone Turnover Markers, and Fractures in the Elderly With Osteoporosis. Front Endocrinol (Lausanne) 2020; 11:571549. [PMID: 33101205 PMCID: PMC7545741 DOI: 10.3389/fendo.2020.571549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/20/2020] [Indexed: 12/06/2022] Open
Abstract
Objective: The study aimed to explore the associations of rs4988300 and rs634008 in the low-density lipoprotein receptor-related protein 5 (LRP5) gene with bone mineral density (BMD), bone turnover markers (BTM), and fractures in elderly patients with osteoporosis (OP). Methods: Our study included 328 unrelated OP patients with or without fractures. Genomic DNA was extracted for genotyping. BTM levels were assessed by electrochemiluminescence (ECL). Dual-energy X-ray absorptiometry (DXA) was employed to measure BMD in the lumbar spine (LS) and proximal femur. Basic features between the OP and fracture groups were analyzed using the t-test. The Chi-square test was performed to analyze the differences in allele and genotype frequencies. The associations of single-nucleotide polymorphisms (SNPs) with BMD and BTM in the subgroups were investigated by the analysis of covariance (ANCOVA) adjusted for confounding factors. Results: In both females and males, individuals with fractures exhibited higher BTM levels and lower BMD values than those with OP (P < 0.05). The allele and genotype frequencies of rs4988300 in the subgroups were significantly different (P < 0.05). In both females and males suffering from OP, participants with rs4988300 GG or rs634008 TT presented lower procollagen I N-terminal propeptide (PINP) levels (P < 0.05). Women with OP carrying rs4988300 GG exhibited lower BMD values at FN and TH (P < 0.05). In both females and males with fractures, individuals carrying rs4988300 GG genotype or rs634008 TT genotype exhibited lower PINP levels and BMD values at FN and TH than those with other genotypes (P < 0.05). Conclusions: Rs4988300 and rs634008 polymorphisms in the LRP5 gene are associated with bone phenotypes in the elderly with OP or fractures.
Collapse
Affiliation(s)
- Qi-Fei Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Hong-Sen Bi
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Ze-Lian Qin
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
- *Correspondence: Ze-Lian Qin
| | - Pu Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Fang-Fei Nie
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Guang-Wu Zhang
- Department of Orthopedics, Peking University Shougang Hospital, Beijing, China
- Guang-Wu Zhang
| |
Collapse
|
6
|
Huybrechts Y, Mortier G, Boudin E, Van Hul W. WNT Signaling and Bone: Lessons From Skeletal Dysplasias and Disorders. Front Endocrinol (Lausanne) 2020; 11:165. [PMID: 32328030 PMCID: PMC7160326 DOI: 10.3389/fendo.2020.00165] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal dysplasias are a diverse group of heritable diseases affecting bone and cartilage growth. Throughout the years, the molecular defect underlying many of the diseases has been identified. These identifications led to novel insights in the mechanisms regulating bone and cartilage growth and homeostasis. One of the pathways that is clearly important during skeletal development and bone homeostasis is the Wingless and int-1 (WNT) signaling pathway. So far, three different WNT signaling pathways have been described, which are all activated by binding of the WNT ligands to the Frizzled (FZD) receptors. In this review, we discuss the skeletal disorders that are included in the latest nosology of skeletal disorders and that are caused by genetic defects involving the WNT signaling pathway. The number of skeletal disorders caused by defects in WNT signaling genes and the clinical phenotype associated with these disorders illustrate the importance of the WNT signaling pathway during skeletal development as well as later on in life to maintain bone mass. The knowledge gained through the identification of the genes underlying these monogenic conditions is used for the identification of novel therapeutic targets. For example, the genes underlying disorders with altered bone mass are all involved in the canonical WNT signaling pathway. Consequently, targeting this pathway is one of the major strategies to increase bone mass in patients with osteoporosis. In addition to increasing the insights in the pathways regulating skeletal development and bone homeostasis, knowledge of rare skeletal dysplasias can also be used to predict possible adverse effects of these novel drug targets. Therefore, this review gives an overview of the skeletal and extra-skeletal phenotype of the different skeletal disorders linked to the WNT signaling pathway.
Collapse
|
7
|
Affiliation(s)
- Stefan Reinhold
- From the Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - W Matthijs Blankesteijn
- From the Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| |
Collapse
|
8
|
Tan Y, Liu L. Prediction of pivotal pathways and hub genes associated with osteoporosis by Gibbs sampling. Exp Ther Med 2019; 17:2107-2112. [PMID: 30867698 PMCID: PMC6395965 DOI: 10.3892/etm.2019.7180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/03/2019] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis (OP) is a common metabolic bone disease with high incidence, and is recognized as a major public health problem worldwide. It is essential to clarify the pathogenesis of the disease for improving the diagnosis, prevention and treatment of OP. The aim of this study was to clarify the pivotal pathways and hub genes in OP using Gibbs sampling. The gene expression profile datasets were obtained from Gene Expression Omnibus (GEO) database. The pathways were enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) with genes intersection ≥5 based on gene expression profile data. Then, the acquired pathways were converted into Markov chains (MC). Gibbs sampling was conducted to obtain a new MC. In addition, the average probabilities of each pathway in two states containing human mesenchymal stem cells (hMSC) _middle-aged and hMSC_elderly were calculated through Markov chain Monte Carlo (MCMC) algorithm. Moreover, gene expression variation was taken into account to adjust the probability. Pivotal pathways were identified under adjusted posterior value >0.8. Then, Gibbs sampling was implemented to find hub genes from pathways. There were 280 pathways determined by the gene intersection ≥5. Gibbs sampling identified two disturbed pathways (pathways in cancer and influenza A) and two hub genes (cyclin A1 and WNT2) under the adjusted probability >0.8. Gene expression analysis showed that all the disturbed pathways and hub genes had increased expression levels in hMSC_middle-aged samples compared with hMSC_elderly samples. We identified two pivotal pathways and two hub genes in OP using Gibbs sampling. The results contribute to the understanding of underlying pathogenesis and could be considered as potential biomarkers for the therapy of OP.
Collapse
Affiliation(s)
- Yiyun Tan
- Department of Spinal Surgery, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan 410000, P.R. China
| | - Lei Liu
- Department of Pain, Qianfo Shan Hospital, Jinan, Shandong 250014, P.R. China
| |
Collapse
|