1
|
Moar K, Pant A, Saini V, Pandey M, Maurya PK. Potential diagnostic and prognostic biomarkers for breast cancer: A compiled review. Pathol Res Pract 2023; 251:154893. [PMID: 37918101 DOI: 10.1016/j.prp.2023.154893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023]
Abstract
Breast cancer is one of the major reason for death of women worldwide. As per the International Agency for Research on Cancer (IARC) statistics, the number of cases of breast cancer is increasing year by year in many parts of the world. As per the recent global cancer burden figures, in 2020, there were 2.26 million incidences of breast cancer cases and it is one of the main causes of mortality due to cancer in women in the world. Biomarkers of breast cancer would prove to be very beneficial to screen women who are at higher risk and for detection of disease recurrence. Here, studies carried out on biomarkers of breast cancer and susceptibility to the disease have been reviewed. Various databases like Google Scholar, ScienceDirect and PubMed have been used for searching and majorly literature from the last 10 years have been considered. Potential biomarkers of breast cancer including blood based angiogenic factors, glycoprotein-based biomarkers, hormone receptor biomarkers and other biomarkers that were identified from various studies have been summarized.
Collapse
Affiliation(s)
- Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Vikas Saini
- Department of Vocational Studies & Skill Development, Central University of Haryana, Mahendergarh 123031, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh 123031, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
2
|
Tewari S, Vargas R, Reizes O. The impact of obesity and adipokines on breast and gynecologic malignancies. Ann N Y Acad Sci 2022; 1518:131-150. [PMID: 36302117 PMCID: PMC10092047 DOI: 10.1111/nyas.14916] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The link between obesity and multiple disease comorbidities is well established. In 2003, Calle and colleagues presented the relationship between obesity and several cancer types, including breast, ovarian, and endometrial malignancies. Nearly, 20% of cancer-related deaths in females can be accounted for by obesity. Identifying obesity as a risk factor for cancer led to a focus on the role of fat-secreted cytokines, known as adipokines, on carcinogenesis and tumor progression. Early studies indicated that the adipokine leptin increases cell proliferation, invasion, and inhibition of apoptosis in multiple cancer types. As a greater appreciation of the obesity-cancer link has amassed, we now know that additional adipokines can impact tumorigenesis. A deeper understanding of the adipokine-activated signaling in cancer may identify new treatment strategies irrespective of obesity. Moreover, adipokines may serve as disease biomarkers, harnessing the potential of obesity-associated factors to serve as indicators of treatment response and disease prognosis. As studies investigating obesity and women's cancers continue to expand, it has become evident that breast, ovarian, and uterine cancers are distinctly impacted by adipokines. While complex, these distinct interactions may provide insight into cancer progression in these organs and new opportunities for targeted therapies. This review aims to organize and present the literature from the last 5 years investigating the mechanisms and implications of adipokine signaling in breast, endometrial, and ovarian cancers with a special focus on leptin and adiponectin.
Collapse
Affiliation(s)
- Surabhi Tewari
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Roberto Vargas
- Department of Gynecologic Oncology, Women's Health Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Ofer Reizes
- Department of Gynecologic Oncology, Women's Health Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Cleveland, Ohio, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Aziz MA, Akter T, Sarwar MS, Islam MS. The first combined meta‐analytic approach for elucidating the relationship of circulating resistin levels and RETN gene polymorphisms with colorectal and breast cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Evidence suggests that circulating resistin levels are altered in colorectal cancer (CRC) and breast cancer (BC). Again, polymorphisms in resistin-encoding gene RETN have been evaluated in CRC and BC. However, there is a scarcity of data establishing the relationship of resistin and RETN polymorphisms (rs1862513 and rs3745367) with these cancers. This study aimed to analyze the relationship of resistin levels and RETN polymorphisms with CRC and BC in a combined meta-analytic approach.
Main body of the abstract
After a comprehensive online literature search, screening and eligibility check, 41 articles (31 with resistin level and 10 with RETN polymorphisms) were retrieved for meta-analyses. The mean difference (MD) of resistin was calculated and pooled to investigate the effect sizes with a 95% confidence interval (CI), and the connection of genetic polymorphisms was analyzed with an odds ratio (OR) and 95% CI. The analysis showed that resistin level is significantly higher in CRC (MD = 3.39) and BC (MD = 3.91) patients. Subgroup analysis in CRC showed significantly higher resistin in serum (MD = 4.61) and plasma (MD = 0.34), and in BC, a significantly elevated resistin level was reported in premenopausal (MD = 7.82) and postmenopausal (MD = 0.37) patients. Again, RETN rs1862513 showed a significantly strong association with CRC (codominant 1—OR 1.24, codominant 2—OR 1.31, dominant model—OR 1.25, and allele model—OR 1.16) and with BC (codominant 2—OR 1.51, codominant 3—OR 1.51, recessive model—OR 1.51, and allele model—OR 1.21). RETN rs3745367 did not show any association with these cancers.
Short conclusion
Overall, our analysis indicates that higher circulating resistin levels are associated with an elevated risk of CRC and premenopausal and postmenopausal BC. Besides, rs1862513 in RETN gene is significantly connected with both CRC and BC.
Collapse
|
4
|
Pang L, Chang X. Resistin Expression in Epithelial Ovarian Cancer promotes the Proliferation and Migration of Ovarian Cancer Cells to Worsen Prognosis. J Cancer 2021; 12:6796-6804. [PMID: 34659568 PMCID: PMC8518001 DOI: 10.7150/jca.62496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Epithelial ovarian cancer (EOC) is the most common gynecological cancer in women. Resistin, an inflammatory adipocytokine, is associated with obesity, insulin resistance, and various cancer types. Materials and Methods: We investigated resistin expression in tissues and its association with the clinicopathological characteristics and prognosis of patients with EOC. The SKOV3 and CAOV3 cell lines were treated with exogenous resistin and rapamycin (resistin inhibitor), and the expression of mTOR in SKOV3 and CAOV3 cells was measured. Cell proliferation was measured using the CCK-8 assay. Western blotting analysis was performed to examine the phosphorylation of P70S6K and mTOR. Wound healing and Transwell analyses were conducted to examine the effect of resistin on the migration of SKOV3 and CAOV3 cells. Results: High resistin expression was positively correlated with the pathological grade (P = 0.017) and lymph node metastasis (P = 0.045). However, resistin expression was not correlated with age, FIGO stage, or residual tumor after initial laparotomy (P > 0.05). Cox multivariate analysis showed that resistin expression was an independent factor for determining disease-free survival, whereas lymph node metastasis, resistin expression, and age (≥55 years) were independent factors affecting overall survival. Exogenous resistin induced ovarian cancer cell proliferation, whereas rapamycin had the opposite effect. Resistin promoted the proliferation of ovarian cancer cells via the mTOR signaling pathway and was associated with phosphorylating P70S6K. Furthermore, resistin promoted the migration of ovarian cancer cells. Conclusions: Resistin may promote the occurrence of ovarian cancer and is related to the prognosis of patients. This protein may also affect the proliferation of EOC cells through the mTOR signaling pathway. Therefore, resistin shows potential as a molecular therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Li Pang
- Department of Obstetrics and Gynecology, ShengJing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaohan Chang
- Department of Obstetrics and Gynecology, ShengJing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Adipocytokines visfatin and resistin in breast cancer: Clinical relevance, biological mechanisms, and therapeutic potential. Cancer Lett 2020; 498:229-239. [PMID: 33152400 DOI: 10.1016/j.canlet.2020.10.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/11/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Obesity is one of the major modifiable risk factors in breast cancer, with obese adipose tissue showing a pathological role in breast cancer development and malignancy via the release of secretory factors, such as proinflammatory cytokines and adipocytokines. The current article focuses on visfatin and resistin, two such adipocytokines that have emerged over the last two decades as leading breast cancer promoting factors in obesity. The clinical association of circulating visfatin and resistin with breast cancer and their biological mechanisms are reviewed, in addition to their role in the context of tumor-stromal interactions in the breast cancer microenvironment. Recent findings have unraveled several mediators of visfatin and resistin that are involved in the crosstalk between breast cancer cells and adipose tissue in the breast tumor microenvironment, including growth differentiation factor 15 (GDF15), interleukin 6 (IL-6), and toll-like receptor 4 (TLR4). Finally, current therapeutics targeting visfatin and resistin and their respective pathways are discussed, including future therapeutic strategies such as new drug design or neutralizing peptides that target extracellular visfatin or resistin. These hold promise in the development of novel breast cancer therapies and are of increasing relevance as the prevalence of obesity-related breast cancer increases worldwide.
Collapse
|
6
|
Rust MB, Khudayberdiev S, Pelucchi S, Marcello E. CAPt'n of Actin Dynamics: Recent Advances in the Molecular, Developmental and Physiological Functions of Cyclase-Associated Protein (CAP). Front Cell Dev Biol 2020; 8:586631. [PMID: 33072768 PMCID: PMC7543520 DOI: 10.3389/fcell.2020.586631] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclase-associated protein (CAP) has been discovered three decades ago in budding yeast as a protein that associates with the cyclic adenosine monophosphate (cAMP)-producing adenylyl cyclase and that suppresses a hyperactive RAS2 variant. Since that time, CAP has been identified in all eukaryotic species examined and it became evident that the activity in RAS-cAMP signaling is restricted to a limited number of species. Instead, its actin binding activity is conserved among eukaryotes and actin cytoskeleton regulation emerged as its primary function. However, for many years, the molecular functions as well as the developmental and physiological relevance of CAP remained unknown. In the present article, we will compile important recent progress on its molecular functions that identified CAP as a novel key regulator of actin dynamics, i.e., the spatiotemporally controlled assembly and disassembly of actin filaments (F-actin). These studies unraveled a cooperation with ADF/Cofilin and Twinfilin in F-actin disassembly, a nucleotide exchange activity on globular actin monomers (G-actin) that is required for F-actin assembly and an inhibitory function towards the F-actin assembly factor INF2. Moreover, by focusing on selected model organisms, we will review current literature on its developmental and physiological functions, and we will present studies implicating CAP in human pathologies. Together, this review article summarizes and discusses recent achievements in understanding the molecular, developmental and physiological functions of CAP, which led this protein emerge as a novel CAPt'n of actin dynamics.
Collapse
Affiliation(s)
- Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, University of Marburg and Justus-Liebig-University Giessen, Giessen, Germany
| | - Sharof Khudayberdiev
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany
| | - Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Wang CQ, Tang CH, Tzeng HE, Jin L, Zhao J, Kang L, Wang Y, Hu GN, Huang BF, Li X, Zhao YM, Su CM, Jin HC. Impacts of RETN genetic polymorphism on breast cancer development. J Cancer 2020; 11:2769-2777. [PMID: 32226495 PMCID: PMC7086250 DOI: 10.7150/jca.38088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/01/2019] [Indexed: 12/24/2022] Open
Abstract
The adipokine resistin is linked with obesity, inflammation and various cancers, including breast cancer. This study sought to determine whether certain polymorphisms in the gene encoding resistin, RETN, increase the risk of breast cancer susceptibility. We analyzed levels of resistin expression in breast cancer tissue and samples from The Cancer Genome Atlas database. We also examined associations between four RETN single nucleotide polymorphisms (SNPs; rs3745367, rs7408174, rs1862513 and rs3219175) and breast cancer susceptibility in 515 patients with breast cancer and 541 healthy women without cancer. Compared with wild-type (GG) carriers, those carrying the AG genotype of the RETN SNP rs3219175 and those carrying at least one A allele in the SNP rs3219175 had a higher chance of developing breast cancer (adjusted odds ratio, AOR: 1.295, 95% confidence intervals, CI: 1.065-1.575 and 2.202, 1.701-2.243, respectively). When clinical aspects and the RETN SNP rs7408174 were examined in the breast cancer cohort, the CT genotype was linked to late-stage disease, while women with luminal A disease and at least one C allele were likely to progress to stage III/IV disease and to develop highly pathological grade III disease. Moreover, resistin-positive individuals were at greater risk than resistin-negative individuals for developing pathological grade III disease (OR: 5.020; 95% CI: 1.380-18.259). This study details risk associations between resistin and RETN SNPs in breast cancer susceptibility in Chinese Han women.
Collapse
Affiliation(s)
- Chao-Qun Wang
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.,Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Huey-En Tzeng
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Division of Hematology/Oncology, Department of Medicine, Taipei Medical University-Shuang Ho Hospital, Taiwan
| | - Lulu Jin
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Jin Zhao
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Le Kang
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yan Wang
- Department of Medical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Gui-Nv Hu
- Department of Surgical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Bi-Fei Huang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Xiaoni Li
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, China
| | - Yong-Ming Zhao
- Department of Surgical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chen-Ming Su
- Department of Sports Medicine, China Medical University, Taichung, Taiwan
| | - Hong-Chuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Mihajlovic M, Ninic A, Sopic M, Miljkovic M, Stefanovic A, Vekic J, Spasojevic-Kalimanovska V, Zeljkovic D, Trifunovic B, Stjepanovic Z, Zeljkovic A. Association among resistin, adenylate cyclase-associated protein 1 and high-density lipoprotein cholesterol in patients with colorectal cancer: a multi-marker approach, as a hallmark of innovative predictive, preventive, and personalized medicine. EPMA J 2019; 10:307-316. [PMID: 31462946 DOI: 10.1007/s13167-019-00178-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
Abstract
Background Elevated concentrations of resistin have been reported in colorectal cancer (CRC), but its interactions with adenylate cyclase-associated protein 1 (CAP-1) are largely unexplored. We investigated resistin plasma concentration, peripheral blood mononuclear cells (PBMCs) resistin messenger ribonucleic acid (mRNA), and CAP-1 mRNA levels in CRC patients, as well as the impact of resistin gene polymorphism rs1862513 on the examined markers. We also explored associations of resistin with high-density lipoprotein cholesterol (HDL-C) and predictive potential of our parameters for CRC. Methods Eighty-six patients with CRC and 75 healthy adults were included. Commercial ELISA kit was used for obtaining resistin's concentrations, while polymerase chain reaction (PCR) method was applied for evaluation of resistin and CAP-1 mRNA levels and rs1862513 polymorphism. Results Plasma resistin and CAP-1 mRNA levels were higher in CRC patients (p < 0.001 and p < 0.05, respectively), while resistin mRNA levels were lower (p < 0.001). Negative association existed among plasma resistin and HDL-C concentrations (ρ = - 0.280; p < 0.05). A model including age, body-mass index, HDL-C, low-density lipoprotein cholesterol (LDL-C), and plasma resistin concentrations as independent predictors of CRC showed very good diagnostic accuracy (AUC = 0.898). We found no associations of rs1862513 with the examined markers. Conclusions Our study demonstrated increased plasma resistin and CAP-1 mRNA levels, implying their possible interaction in CRC. The association among plasma resistin and HDL-C might indicate that HDL-C is involved in alterations of resistin's secretion process. As a hallmark of personalized medicine, multi-marker approach in determination of resistin-related parameters might be useful for prediction and prevention of CRC development.
Collapse
Affiliation(s)
- Marija Mihajlovic
- 1Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, POB 146, Belgrade, 11000 Serbia
| | - Ana Ninic
- 1Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, POB 146, Belgrade, 11000 Serbia
| | - Miron Sopic
- 1Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, POB 146, Belgrade, 11000 Serbia
| | - Milica Miljkovic
- 1Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, POB 146, Belgrade, 11000 Serbia
| | - Aleksandra Stefanovic
- 1Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, POB 146, Belgrade, 11000 Serbia
| | - Jelena Vekic
- 1Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, POB 146, Belgrade, 11000 Serbia
| | | | - Dejan Zeljkovic
- 2Clinic of General Surgery, Military Medical Academy, Belgrade, Serbia
| | - Bratislav Trifunovic
- 2Clinic of General Surgery, Military Medical Academy, Belgrade, Serbia
- 3Faculty of Medicine of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | | | - Aleksandra Zeljkovic
- 1Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, POB 146, Belgrade, 11000 Serbia
| |
Collapse
|
9
|
Avtanski D, Garcia A, Caraballo B, Thangeswaran P, Marin S, Bianco J, Lavi A, Poretsky L. Resistin induces breast cancer cells epithelial to mesenchymal transition (EMT) and stemness through both adenylyl cyclase-associated protein 1 (CAP1)-dependent and CAP1-independent mechanisms. Cytokine 2019; 120:155-164. [PMID: 31085453 DOI: 10.1016/j.cyto.2019.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/21/2019] [Accepted: 04/22/2019] [Indexed: 01/08/2023]
Abstract
Breast cancer incidence and metastasis in postmenopausal women are known to associate with obesity, but the molecular mechanisms behind this association are largely unknown. We investigated the effect of adipokine resistin on epithelial to mesenchymal transition (EMT) and stemness in breast cancer cells in vitro. Previous reports demonstrated that the inflammatory actions of resistin are mediated by the adenylyl cyclase-associated protein 1 (CAP1), which serves as its receptor. As a model for our study, we used MCF-7 and MDA-MB-231 breast cancer and MCF-10A breast epithelial cells. We showed that in MCF-7 cells resistin increases the migration of MCF-7 and MDA-MB-231 cells and induces the formation of cellular protrusions through reorganization of F-actin filaments. Resistin upregulated the expression of mesenchymal markers involved in EMT (SNAIL, SLUG, ZEB1, TWIST1, fibronectin, and vimentin), and downregulated those of epithelial markers (E-cadherin and claudin-1). Resistin also potentiated the nuclear translocation of SNAIL protein, indicating initiation of EMT reprogramming. We further induced EMT in non-carcinogenic breast epithelial MCF-10A cells demonstrating that the effects of resistin on EMT were not breast cancer cell specific. In order to assess whether resistin-induced EMT depends on CAP1, we used siRNA approach to silence CAP1 gene in MCF-7 cells. Results demonstrated that when CAP1 was silenced, the induction of SNAIL, ZEB1 and vimentin expression by resistin as well as SNAIL and ZEB1 nuclear translocation, were abolished. Additionally, CAP1 silencing resulted in a suppression of MCF-7 cells migration. We performed quantitative PCR array profiling the expression of 84 genes related to cancer stem cells (CSC), pluripotency and metastasis and selected a set of genes (ALDH1A1, ITGA4, LIN28B, SMO, KLF17, PTPRC, PROM1, SIRT1, and PECAM1) that were modulated by resistin. Further experiments demonstrated that the effect of resistin on the expression of some of these genes (PROM1, PTPRC, KLF17, SIRT1, and PECAM1) was also dependent on CAP1. Our results demonstrate that resistin promotes the metastatic potential of breast cancer cells by inducing EMT and stemness and some of these effects are mediated by CAP1.
Collapse
Affiliation(s)
- Dimiter Avtanski
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA; The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Anabel Garcia
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Beatriz Caraballo
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | | | - Sela Marin
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Julianna Bianco
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Aaron Lavi
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Leonid Poretsky
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA; The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
10
|
Zavala VA, Serrano-Gomez SJ, Dutil J, Fejerman L. Genetic Epidemiology of Breast Cancer in Latin America. Genes (Basel) 2019; 10:E153. [PMID: 30781715 PMCID: PMC6410045 DOI: 10.3390/genes10020153] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/20/2022] Open
Abstract
The last 10 years witnessed an acceleration of our understanding of what genetic factors underpin the risk of breast cancer. Rare high- and moderate-penetrance variants such as those in the BRCA genes account for a small proportion of the familial risk of breast cancer. Low-penetrance alleles are expected to underlie the remaining heritability. By now, there are about 180 genetic polymorphisms that are associated with risk, most of them of modest effect. In combination, they can be used to identify women at the lowest or highest ends of the risk spectrum, which might lead to more efficient cancer prevention strategies. Most of these variants were discovered in populations of European descent. As a result, we might be failing to discover additional polymorphisms that could explain risk in other groups. This review highlights breast cancer genetic epidemiology studies conducted in Latin America, and summarizes the information that they provide, with special attention to similarities and differences with studies in other populations. It includes studies of common variants, as well as moderate- and high-penetrance variants. In addition, it addresses the gaps that need to be bridged in order to better understand breast cancer genetic risk in Latin America.
Collapse
Affiliation(s)
- Valentina A Zavala
- Department of Medicine, Division of General Internal Medicine, University of California San Francisco, San Francisco, CA 94143-1793, USA.
| | - Silvia J Serrano-Gomez
- Grupo de investigación en biología del cáncer, Instituto Nacional de Cancerología, Bogotá 11001000, Colombia.
| | - Julie Dutil
- Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00732, USA.
| | - Laura Fejerman
- Department of Medicine, Division of General Internal Medicine, University of California San Francisco, San Francisco, CA 94143-1793, USA.
| |
Collapse
|
11
|
Hashemi M, Bahari G, Tabasi F, Moazeni-Roodi A, Ghavami S. Association between rs1862513 and rs3745367 Genetic Polymorphisms of Resistin and Risk of Cancer: A Meta-Analysis. Asian Pac J Cancer Prev 2018; 19:2709-2716. [PMID: 30360595 PMCID: PMC6291049 DOI: 10.22034/apjcp.2018.19.10.2709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to assess any associations between resistin gene (RETN) polymorphisms and cancer
susceptibility by conducting a meta-analysis. A comprehensive literature search was performed with PubMed, Web of
Science, Scopus and Google Scholar for relevant studies published before April 2018. For the rs1862513 polymorphism,
data from 9 studies covering 1,951 cancer patients and 2,295 healthy controls were included in this meta-analysis. Pooled
odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. Our meta-analysis revealed that this RETN
polymorphism significantly increased the risk of cancer in codominant (OR=1.23, 95% CI= 1.01-1.50, p=0.04, CG vs CC;
and OR=1.25, 95% CI= 1.03-1.53, p=0.03, GG vs CC), dominant (OR=1.19, 95% CI= 1.05-1.35, p=0.006, CG+GG vs CC),
and allele (OR=1.14, 95% CI= 1.00-1.30, p=0.04, G vs C) inheritance genetic models. Stratification analysis by cancer
type revealed that the rs1862513 variant significantly increased the risk of colorectal and breast cancer, and that cancer
overall in Caucasians (OR=1.22, 95% CI= 1.04-1.43, p=0.02, CG+GG vs CC; OR=1.18, 95% CI= 1.04-1.34, p=0.01,
G vs C). The data revealed no correlation between the rs3745367 polymorphism and cancer risk. Further well-designed
studies with larger sample sizes and different ethnicities are warranted to validate the present findings.
Collapse
Affiliation(s)
- Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | | | | | | | | |
Collapse
|
12
|
Zhang M, Yan L, Wang GJ, Jin R. Resistin effects on pancreatic cancer progression and chemoresistance are mediated through its receptors CAP1 and TLR4. J Cell Physiol 2018; 234:9457-9466. [PMID: 30317640 DOI: 10.1002/jcp.27631] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022]
Abstract
Resistin, secreted by macrophages in tumor microenvironment, has never been investigated in pancreatic cancer models, despite a vibrant tumor microenvironment around pancreatic tumors. We evaluated serum resistin levels in healthy individuals versus pancreatic cancer patients representing different tumor grades. In vitro mechanistic analysis involved MiaPaCa-2 and SW1990 cells. Resistin signaling depends on binding of resistin to its cognitive receptors. Therefore, we silenced adenylyl cyclase-associated protein 1 (CAP1) and toll-like receptor 4 (TLR4), its two known receptors, individually as well as in combination, by short hairpin RNA (shRNA). Effect of resistin on cell proliferation, migration, invasion, cell cycle, and sensitivity to gemcitabine was studied without or with silencing of resistin receptors CAP1 and/or TLR4. The results were also confirmed in vivo in mice xenografted with MiaPaCa-2 cells without or with receptor silencing. We report high resistin levels in pancreatic cancer patients which correlate positively with tumor grades. We observed a marked reduction in the resistin-induced proliferation, migration, invasion, and cell cycle of pancreatic cancer cells MiaPaCa-2 and SW1990 when the receptors were silenced. The results were confirmed in vivo wherein resistin effects were significantly attenuated in MiaPaCa-2 xenografts with silenced receptors. The combined silencing of CAP1 and TLR4 was found to be most effective in vitro and in vivo. We found activation of STAT3 by resistin in vivo and in vitro which was dependent on the presence of CAP1 and TLR4. Further, resistin was found to induce resistance to gemcitabine through its receptors. Our results describe novel functional roles of resistin with implications toward a better understanding of pancreatic tumor microenvironment.
Collapse
Affiliation(s)
- Min Zhang
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Li Yan
- Nursing Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Gui-Jie Wang
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ronghui Jin
- Department of Respiration, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Rosendahl AH, Bergqvist M, Lettiero B, Kimbung S, Borgquist S. Adipocytes and Obesity-Related Conditions Jointly Promote Breast Cancer Cell Growth and Motility: Associations With CAP1 for Prognosis. Front Endocrinol (Lausanne) 2018; 9:689. [PMID: 30524378 PMCID: PMC6262006 DOI: 10.3389/fendo.2018.00689] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/02/2018] [Indexed: 12/04/2022] Open
Abstract
The global increase in overweight and obesity rates represent pressing public health concerns associated with severe comorbidities, amongst a rising incidence and impaired outcome of breast cancer. Yet, biological explanations for how obesity affects breast cancer are incompletely mapped. Herein, the joint impact by differentiated 3T3-L1 adipocytes and obesity-related metabolic conditions on breast cancer cells was evaluated in vitro and adipocyte-derived mediators assessed. Adipokine receptor expression was explored among breast cancer cell lines (n = 47) and primary breast tumors (n = 1,881), where associations with survival outcomes were investigated. Adipocytes and metabolic complications jointly stimulated breast cancer cell proliferation and motility, with phenotype-specific differences. Resistin was among the top modulated adipokines secreted by 3T3-L1 adipocytes under obesity-associated metabolic conditions compared with normal physiology. The newly identified resistin receptor, CAP1, was expressed across a large panel of breast cancer cell lines and primary breast tumors. CAP1 was associated with poor tumor characteristics with higher CAP1 expression among estrogen receptor (ER)-negative tumors, relative to ER-positive tumors (P = 0.025), and higher histological grades (P = 0.016). High CAP1 tumor expression was associated with shorter overall survival (adjusted hazard ratio [HRadj] 1.54; 95% confidence interval [CI], 1.11-2.13) and relapse-free survival (HRadj 1.47; 95% CI, 1.10-1.96), compared with low or intermediate CAP1 expression, particularly among ER-positive tumors or lymph node positive tumors. Together, these translational data demonstrate that the adipocyte secretome promote breast cancer cell proliferation and motility and highlight a potential role of CAP1 regarding breast cancer outcome-results that warrant further investigation to elucidate the obesity-breast cancer link in human pathology.
Collapse
Affiliation(s)
- Ann H. Rosendahl
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
- *Correspondence: Ann H. Rosendahl
| | - Malin Bergqvist
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Barbara Lettiero
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Siker Kimbung
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Signe Borgquist
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
- Departments of Clinical Medicine/Oncology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|