1
|
Zhao R, Liu M, Dai E, Chen C, Lv L, Peng L, He Y, Li S, Yang M. Deciphering a crucial dimeric interface governing Norrin dimerization and the pathogenesis of familial exudative vitreoretinopathy. FASEB J 2024; 38:e23493. [PMID: 38363575 DOI: 10.1096/fj.202302387r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disease that could cause blindness. It has been established that Norrin forms dimers to activate β-catenin signaling, yet the core interface for Norrin dimerization and the precise mechanism by which Norrin dimerization contributes to the pathogenesis of FEVR remain elusive. Here, we report an NDP variant, c.265T>C (p.Phe89Leu), that interrupted β-catenin signaling by disrupting Norrin dimerization. Structural and functional analysis revealed that the Phe-89 of one Norrin monomer interacts with Pro-98, Ser-101, Arg-121, and Ile-123 of another, forming two core symmetrical dimerization interfaces that are pivotal for the formation of a "hand-by-arm" dimer. Intriguingly, we proved that one of the two core symmetrical interfaces is sufficient for dimerization and activation of β-catenin signaling, with a substantial contribution from the Phe-89/Pro-98 interaction. Further functional analysis revealed that the disruption of both dimeric interfaces eliminates potential binding sites for LRP5, which could be partially restored by over-expression of TSPAN12. In conclusion, our findings unveil a core dimerization interface that regulates Norrin/LRP5 interaction, highlighting the essential role of Norrin dimerization on β-catenin signaling and providing potential therapeutic avenues for the treatment of FEVR.
Collapse
Affiliation(s)
- Rulian Zhao
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Min Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Liting Lv
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Peng
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yunqi He
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Shujin Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Mu Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
2
|
Tan J, Zeng L, Wang Y, Liu G, Huang L, Chen D, Wang X, Fan N, He Y, Liu X. Compound Heterozygous Variants of the CPAMD8 Gene Co-Segregating in Two Chinese Pedigrees With Pigment Dispersion Syndrome/Pigmentary Glaucoma. Front Genet 2022; 13:845081. [PMID: 35957697 PMCID: PMC9358689 DOI: 10.3389/fgene.2022.845081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular mechanisms underlying the pathogenesis of pigment dispersion syndrome and pigmentary glaucoma remain unclear. In pedigree-based studies, familial aggregation and recurrences in relatives suggest a strong genetic basis for pigmentary glaucoma. In this study, we aimed to identify the genetic background of two Chinese pedigrees with pigmentary glaucoma. All members of these two pedigrees who enrolled in the study underwent a comprehensive ophthalmologic examination, and genomic DNA was extracted from peripheral venous blood samples. Whole-exome sequencing and candidate gene verifications were performed to identify the disease-causing variants; in addition, screening of the CPAMD8 gene was performed on 38 patients of sporadic pigmentary glaucoma. Changes in the structure and function of abnormal proteins caused by gene variants were analyzed with a bioinformatics assessment. Pigmentary glaucoma was identified in a total of five patients from the two pedigrees, as were compound heterozygous variants of the CPAMD8 gene. No signs of pigmentary glaucoma were found in carriers of monoallelic CPAMD8 variant/variants. All four variants were inherited in an autosomal recessive mode. In addition to the 38 patients of sporadic pigmentary glaucoma, 13 variants of the CPAMD8 gene were identified in 11 patients. This study reported a possible association between CPAMD8 variants and pigment dispersion syndrome/pigmentary glaucoma.
Collapse
Affiliation(s)
- Junkai Tan
- Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Liuzhi Zeng
- Department of Ophthalmology, Chengdu First People’s Hospital, Chengdu, China
| | - Yun Wang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Guo Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Longxiang Huang
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Defu Chen
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xizhen Wang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Ning Fan
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Yu He
- Department of Ophthalmology, Chengdu First People’s Hospital, Chengdu, China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen, China
- Department of Ophthalmology, Shenzhen People’s Hospital, The 2nd Clinical Medical College, Jinan University, Shenzhen, China
- *Correspondence: Xuyang Liu,
| |
Collapse
|
3
|
Cai S, Zhang D, Jiao X, Wang T, Fan M, Wang Y, Hejtmancik JF, Liu X. Novel compound heterozygous mutations in CYP1B1 identified in a Chinese family with developmental glaucoma. Mol Med Rep 2021; 24:803. [PMID: 34528698 DOI: 10.3892/mmr.2021.12443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 08/05/2021] [Indexed: 11/06/2022] Open
Abstract
Developmental glaucoma, a subset of glaucoma, is associated with trabeculodysgenesis and/or anterior segment dysgenesis. It is one of the major causes of childhood blindness. Understanding its genetic background is important to diagnose, and identify potential therapeutic targets, of this disease. The present study aimed to detect the molecular origin of developmental glaucoma in a Chinese pedigree and its association with glaucomatous phenotypes. A three‑generation pedigree with developmental glaucoma was analyzed in the current study; a thorough ocular examination was performed on the proband and other individuals in the family. Genomic DNA was extracted from the peripheral blood of each individual, and possible disease‑causing genes were screened for mutations using a candidate gene panel. Exons and adjacent regions of the target genes were captured and enriched by probe hybridization. The enriched genes were sequenced on an Illumina high‑throughput sequencer. Variations were verified in other family members using Sanger sequencing. Disease causing mutations were analyzed by comparing the sequences and the structures of wild‑type and mutated cytochrome P450 family 1 subfamily B member 1 (CYP1B1) proteins using PyMOL software. The proband was diagnosed with developmental glaucoma and his parents and other relatives were asymptomatic. Novel compound heterozygous mutations, c.3G>A (p.M1I) and c.1310C>T (p.P437L), in CYP1B1 were detected in the proband, with the former inherited from his father and the latter from his mother. The c.3G>A (p.M1I) change is a novel mutation that disrupts the ATG start codon in exon one of CYP1B1 and therefore interferes with the translation start site. In conclusion, the findings of the present study suggested that the aforementioned compound heterozygous mutations in CYP1B1 may have caused developmental glaucoma in this Chinese family. The c.3G>A mutation in CYP1B1 is a novel mutation, and this study expands the gene mutation spectrum of CYP1B1.
Collapse
Affiliation(s)
- Suping Cai
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Shenzhen University School of Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Daren Zhang
- Xiamen Eye Center, Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20852, USA
| | - Tingting Wang
- Department of Ophthalmology and Optometry, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Mengjie Fan
- Department of Ophthalmology and Optometry, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Yun Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Shenzhen University School of Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - James Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20852, USA
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen, Fujian 361000, P.R. China
| |
Collapse
|