1
|
Wang Y, Qu K, Xia Z, Qi M, Du X, Ke Z, Zhang R. Selenoprotein S (SELENOS) is a potential prognostic biomarker for brain lower grade glioma. J Trace Elem Med Biol 2024; 86:127539. [PMID: 39378668 DOI: 10.1016/j.jtemb.2024.127539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Selenium, an essential micronutrient, primarily exists as selenocysteine in various selenoproteins. Selenoprotein S (SELENOS) is crucial in the development of human cancer. This study aimed to explore the correlation between SELENOS gene expression and the prognosis of brain lower-grade glioma (LGG). METHODS SELENOS protein and mRNA expression in human normal and tumor tissues were explored through the HPA database. SELENOS expression differences between normal and tumor tissues, along with its prognostic significance in gliomas, were analyzed using the TCGA, GTEx datasets, while the CGGA dataset was used to further assess its prognostic potential in a Chinese cohort. The association between SELENOS expression and tumor immune infiltration was also assessed. Multivariate and univariate Cox models were used to screen for clinicopathological parameters associated with SELENOS expression. The GDSC datasets was utilized to explore the connection between SELENOS and chemotherapeutic responses in LGG. A protein-protein interaction network for SELENOS was created. SELENOS expression in LGG cell lines were determined by Western blotting and qRT-PCR, and its functions were ascertained by routine in vitro experiments. RESULTS SELENOS was upregulated in 11 cancers and downregulated in 10 cancers relative to the corresponding normal tissues, and correlated significantly with the prognosis, especially for GBM, LGG and GBMLGG. Furthermore, It displayed a positive correlation with immune cell infiltration levels in LGG. Multivariate and Univariate Cox analyses confirmed that the impact of SELENOS on the prognosis of LGG is the combined result of factors such as age and tumor grade. The expression of SELENOS was significantly negatively correlated with temozolomide IC50 in LGG. We found that SELENOS interacts with 10 proteins, which are upregulated in LGG compared to human normal tissues. The expression of these interactors is positively correlated with SELENOS expression and LGG survival/prognosis. In vitro experiments confirmed the aberrant expression of SELENOS in LGG cell lines, and siRNA-mediated knockdown of SELENOS reduced the proliferation, viability, invasion and migration of LGG cells, and induced apoptosis. CONCLUSIONS SELENOS is a potential prognostic marker and therapeutic target for LGG, and its low expression is associated with favorable prognosis in LGG.
Collapse
Affiliation(s)
- Yuetong Wang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), Xi'an 710003, PR China
| | - Kai Qu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), Xi'an 710003, PR China
| | - Zengrun Xia
- Ankang R&D Center of Se-enriched Products, Ankang 725000, PR China
| | - Meng Qi
- Ankang R&D Center of Se-enriched Products, Ankang 725000, PR China
| | - Xiaoping Du
- Ankang R&D Center of Se-enriched Products, Ankang 725000, PR China
| | - Zunhua Ke
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Rongqiang Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| |
Collapse
|
2
|
Cai YX, Wu YQ, Liu J, Pan H, Deng W, Sun W, Xie C, Huang XF. Proteome-wide analysis reveals potential therapeutic targets for Colorectal cancer: a two-sample mendelian randomization study. BMC Cancer 2023; 23:1188. [PMID: 38049731 PMCID: PMC10696874 DOI: 10.1186/s12885-023-11669-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of cancer-related mortality, highlighting an unmet clinical need for more effective therapies. This study aims to evaluate the causal relationship between 4,489 plasma proteins and CRC to identify potential therapeutic targets for CRC. METHODS We conducted two-sample Mendelian randomization (MR) analysis to examine the causal effects of plasma proteins on CRC. Mediation analysis was performed to assess the indirect effects of plasma proteins on CRC through associated risk factors. In addition, we conducted a phenome-wide association study using the UK Biobank dataset to examine associations between these plasma proteins and other phenotypes. RESULTS Out of 4,489 plasma proteins, MR analysis revealed causal associations with CRC for 23 proteins, including VIMP, MICB, TNFRSF11B, C5orf38 and SLC5A8. Our findings also confirm the associations between reported risk factors and CRC. Mediation analysis identified mediating effects of proteins on CRC outcomes through risk factors. Furthermore, MR analysis identified 154 plasma proteins are causally linked to at least one CRC risk factor. CONCLUSIONS Our study evaluated the causal relationships between plasma proteins and CRC, providing a more complete understanding of potential therapeutic targets for CRC.
Collapse
Affiliation(s)
- Yi-Xin Cai
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi-Qing Wu
- Department of Pediatrics, the Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Liu
- Information Technology Center, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huanle Pan
- Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenhai Deng
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Congying Xie
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiu-Feng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Dogaru CB, Muscurel C, Duță C, Stoian I. "Alphabet" Selenoproteins: Their Characteristics and Physiological Roles. Int J Mol Sci 2023; 24:15992. [PMID: 37958974 PMCID: PMC10650576 DOI: 10.3390/ijms242115992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Selenium (Se) is a metalloid that is recognized as one of the vital trace elements in our body and plays multiple biological roles, largely mediated by proteins containing selenium-selenoproteins. Selenoproteins mainly have oxidoreductase functions but are also involved in many different molecular signaling pathways, physiological roles, and complex pathogenic processes (including, for example, teratogenesis, neurodegenerative, immuno-inflammatory, and obesity development). All of the selenoproteins contain one selenocysteine (Sec) residue, with only one notable exception, the selenoprotein P (SELENOP), which has 10 Sec residues. Although these mechanisms have been studied intensely and in detail, the characteristics and functions of many selenoproteins remain unknown. This review is dedicated to the recent data describing the identity and the functions of several selenoproteins that are less known than glutathione peroxidases (Gpxs), iodothyronine deiodinases (DIO), thioredoxin reductases (TRxRs), and methionine sulfoxide reductases (Msrs) and which are named after alphabetical letters (i.e., F, H, I, K, M, N, O, P, R, S, T, V, W). These "alphabet" selenoproteins are involved in a wide range of physiological and pathogenetic processes such as antioxidant defense, anti-inflammation, anti-apoptosis, regulation of immune response, regulation of oxidative stress, endoplasmic reticulum (ER) stress, immune and inflammatory response, and toxin antagonism. In selenium deficiency, the "alphabet" selenoproteins are affected hierarchically, both with respect to the particular selenoprotein and the tissue of expression, as the brain or endocrine glands are hardly affected by Se deficiency due to their equipment with LRP2 or LRP8.
Collapse
Affiliation(s)
| | | | - Carmen Duță
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania (I.S.)
| | | |
Collapse
|
4
|
Strauss E, Januszkiewicz-Lewandowska D, Sobaniec A, Gotz-Więckowska A. SELENOP rs3877899 Variant Affects the Risk of Developing Advanced Stages of Retinopathy of Prematurity (ROP). Int J Mol Sci 2023; 24:7570. [PMID: 37108730 PMCID: PMC10145309 DOI: 10.3390/ijms24087570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The significance of selenoproteins for the incidence of prematurity and oxidative-damage-related diseases in premature newborns is poorly understood. The latter are at risk for ROP as well as BPD, IVH, PDA, RDS, and NEC, which is particularly high for newborns with extremely low gestational age (ELGA) and extremely low birth weight (ELBW). This study evaluates the hypothesis that variation in the selenoprotein-encoding genes SELENOP, SELENOS, and GPX4 affects the risk of ROP and other comorbidities. The study included infants born ≤ 32 GA, matched for onset and progression of ROP into three groups: no ROP, spontaneously remitting ROP, and ROP requiring treatment. SNPs were determined with predesigned TaqMan SNP genotyping assays. We found the association of the SELENOP rs3877899A allele with ELGA (defined as <28 GA), ROP requiring treatment, and ROP not responsive to treatment. The number of RBC transfusions, ELGA, surfactant treatment, and coexistence of the rs3877899A allele with ELGA were independent predictors of ROP onset and progression, accounting for 43.1% of the risk variation. In conclusion, the SELENOP rs3877899A allele associated with reduced selenium bioavailability may contribute to the risk of ROP and visual impairment in extremely preterm infants.
Collapse
Affiliation(s)
- Ewa Strauss
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Danuta Januszkiewicz-Lewandowska
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland;
- Department of Medical Diagnostics, Dobra Street 38a, 60-595 Poznan, Poland
| | - Alicja Sobaniec
- Department of Neonatology, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland
| | - Anna Gotz-Więckowska
- Department of Ophthalmology, Poznan University of Medical Sciences, Szamarzewskiego 84, 60-569 Poznan, Poland;
| |
Collapse
|
5
|
Ghelichkhani F, Gonzalez FA, Kapitonova MA, Schaefer-Ramadan S, Liu J, Cheng R, Rozovsky S. Selenoprotein S: A versatile disordered protein. Arch Biochem Biophys 2022; 731:109427. [PMID: 36241082 PMCID: PMC10026367 DOI: 10.1016/j.abb.2022.109427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Selenoprotein S (selenos) is a small, intrinsically disordered membrane protein that is associated with various cellular functions, such as inflammatory processes, cellular stress response, protein quality control, and signaling pathways. It is primarily known for its contribution to the ER-associated degradation (ERAD) pathway, which governs the extraction of misfolded proteins or misassembled protein complexes from the ER to the cytosol for degradation by the proteasome. However, selenos's other cellular roles in signaling are equally vital, including the control of transcription factors and cytokine levels. Consequently, genetic polymorphisms of selenos are associated with increased risk for diabetes, dyslipidemia, and cardiovascular diseases, while high expression levels correlate with poor prognosis in several cancers. Its inhibitory role in cytokine secretion is also exploited by viruses. Since selenos binds multiple protein complexes, however, its specific contributions to various cellular pathways and diseases have been difficult to establish. Thus, the precise cellular functions of selenos and their interconnectivity have only recently begun to emerge. This review aims to summarize recent insights into the structure, interactome, and cellular roles of selenos.
Collapse
Affiliation(s)
- Farid Ghelichkhani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Fabio A Gonzalez
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Mariia A Kapitonova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | | | - Jun Liu
- Enlaza Therapeutics, 11099 N. Torrey Pines Rd, suite 290, La Jolla, CA, 92037, USA
| | - Rujin Cheng
- NGM Biopharmaceuticals, Inc., 333 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
6
|
Dávila-Vega JP, Gastelum-Hernández AC, Serrano-Sandoval SN, Serna-Saldívar SO, Guitiérrez-Uribe JA, Milán-Carrillo J, Martínez-Cuesta MC, Guardado-Félix D. Metabolism and Anticancer Mechanisms of Selocompounds: Comprehensive Review. Biol Trace Elem Res 2022:10.1007/s12011-022-03467-1. [PMID: 36342630 DOI: 10.1007/s12011-022-03467-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Selenium (Se) is an essential micronutrient with several functions in cellular and molecular anticancer processes. There is evidence that Se depending on its chemical form and the dosage use could act as a modulator in some anticancer mechanisms. However, the metabolism of organic and inorganic forms of dietary selenium converges on the main pathways. Different selenocompounds have been reported to have crucial roles as chemopreventive agents, such as antioxidant activity, activation of apoptotic pathways, selective cytotoxicity, antiangiogenic effect, and cell cycle modulation. Nowadays, great interest has arisen to find therapies that could enhance the antitumor effects of different Se sources. Herein, different studies are reported related to the effects of combinatorial therapies, where Se is used in combination with proteins, polysaccharides, chemotherapeutic agents or as nanoparticles. Another important factor is the presence of single nucleotide polymorphisms in genes related to Se metabolism or selenoprotein synthesis which could prevent cancer. These studies and mechanisms show promising results in cancer therapies. This review aims to compile studies that have demonstrated the anticancer effects of Se at molecular levels and its potential to be used as chemopreventive and in cancer treatment.
Collapse
Affiliation(s)
- Juan Pablo Dávila-Vega
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - Ana Carolina Gastelum-Hernández
- Facultad de Ciencias Químico Biológicas, Programa Regional de Posgrado en Biotecnología, Universidad Autónoma de Sinaloa, FCQB-UAS, AP 1354, CP 80000, Culiacán, Sinaloa, Mexico
| | - Sayra N Serrano-Sandoval
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - Sergio O Serna-Saldívar
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
| | - Janet A Guitiérrez-Uribe
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
- Escuela de Ingeniería Y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, Campus Puebla, Vía Atlixcáyotl 5718, C.P. 72453, Puebla, Pue, México
| | - Jorge Milán-Carrillo
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - M Carmen Martínez-Cuesta
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de La Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Daniela Guardado-Félix
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México.
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico.
| |
Collapse
|
7
|
Fang J, Xu T, Liu N. Effects of RPA1 gene polymorphisms on the sensitivity to oxaliplatin in the treatment of gastric cancer. Minerva Gastroenterol (Torino) 2022; 68:348-349. [PMID: 34664893 DOI: 10.23736/s2724-5985.21.02965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Fang
- Department of Gastroenterology, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Tao Xu
- Department of Gastroenterology, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Nian Liu
- Department of Gastroenterology, Affiliated Hospital of Jianghan University, Wuhan, China - 94392547@@qq.com
| |
Collapse
|
8
|
Mao H, Zhao Y, Lei L, Hu Y, Zhu H, Wang R, Ni D, Liu J, Xu L, Xia H, Zhang Z, Ma M, Pan Z, Zhou Q, Xie Y. Selenoprotein S regulates tumorigenesis of clear cell renal cell carcinoma through AKT/ GSK3β/NF-κB signaling pathway. Gene 2022; 832:146559. [PMID: 35569765 DOI: 10.1016/j.gene.2022.146559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/04/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most lethal genitourinary tumors with rapid progression and metastasis. Selenoprotein S (SELS), which is broadly expressed in human tissues, has been reported to be involved in ER homeostasis and inflammation. However, the biological roles of SELS in ccRCC remain unclear. In this study, we found that SELS expression was significantly higher in ccRCC and correlated with multiple clinicopathological features. Overexpression of SELS could promote cell proliferation and inhibit apoptosis in 786-O cells, whereas silence of SELS elicited opposite effect. Further mechanistic studies revealed that SELS enhanced cell proliferation and inhibited apoptosis through activating AKT/GSK3β/NF-κB signaling pathway. Besides, SELS could stabilize c-Myc by preventing ubiquitin-proteasome-mediated degradation. Interestingly, we found that SELS could also inhibit migration of ccRCC cell likely through repressing epithelial-mesenchymal transition (EMT). Collectively, our findings suggested that SELS promoted tumor progression, and inhibited apoptosis and migration through AKT/GSK3β/NF-κB signaling pathway and EMT in ccRCC.
Collapse
Affiliation(s)
- Huajie Mao
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Department of Laboratory Medicine, the First Hospital of Xi'an, Xi'an 710002, China
| | - Ya Zhao
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Department of Laboratory Medicine, the First Hospital of Xi'an, Xi'an 710002, China
| | - Li Lei
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yanxia Hu
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hangrui Zhu
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Runzhi Wang
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Dongsheng Ni
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jianing Liu
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lei Xu
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hua Xia
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zaikuan Zhang
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Meng Ma
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zheng Pan
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qin Zhou
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yajun Xie
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
9
|
Mukhtar M, Ashfield N, Vodickova L, Vymetalkova V, Levy M, Liska V, Bruha J, Bendova P, O’Sullivan J, Doherty G, Sheahan K, Nolan B, Vodicka P, Hughes DJ. The Associations of Selenoprotein Genetic Variants with the Risks of Colorectal Adenoma and Colorectal Cancer: Case–Control Studies in Irish and Czech Populations. Nutrients 2022; 14:nu14132718. [PMID: 35807897 PMCID: PMC9268344 DOI: 10.3390/nu14132718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Selenium manifests its biological effects through its incorporation into selenoproteins, which play several roles in countering oxidative and inflammatory responses implicated in colorectal carcinogenesis. Selenoprotein genetic variants may contribute to colorectal cancer (CRC) development, as we previously observed for SNP variants in a large European prospective study and a Czech case–control cohort. Methods: We tested if significantly associated selenoprotein gene SNPs from these studies were also associated with CRC risk in case–control studies from Ireland (colorectal neoplasia, i.e., cancer and adenoma cases: 450, controls: 461) and the Czech Republic (CRC cases: 718, controls: 646). Genotyping of 23 SNPs (20 in the Irish and 13 in the Czechs) was performed by competitive specific allele-specific PCR (KASPar). Multivariable adjusted logistic regression was used to assess the associations with CRC development. Results: We found significant associations with an increased CRC risk for rs5859 (SELENOF) and rs2972994 (SELENOP) in the Irish cohort but only with rs4802034 (SELENOV) in the Czechs. Significant associations were observed for rs5859 (SELENOF), rs4659382 (SELENON), rs2972994 (SELENOP), rs34713741 (SELENOS), and the related Se metabolism gene variant rs2275129 (SEPHS1) with advanced colorectal neoplasia development. However, none of these findings retained significance after multiple testing corrections. Conclusions: Several SNPs previously associated with CRC risk were also associated with CRC or colorectal neoplasia development in either the Irish or Czech cohorts. Selenoprotein gene variation may modify CRC risk across diverse European populations, although the specific variants may differ.
Collapse
Affiliation(s)
- Maryam Mukhtar
- Cancer Biology and Therapeutics Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland; (M.M.); (N.A.)
| | - Niall Ashfield
- Cancer Biology and Therapeutics Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland; (M.M.); (N.A.)
| | - Ludmila Vodickova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic; (L.V.); (V.V.); (P.V.)
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (V.L.); (J.B.)
- Institute of Experimental Medicine ASCR, 142 20 Prague, Czech Republic;
| | - Veronika Vymetalkova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic; (L.V.); (V.V.); (P.V.)
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (V.L.); (J.B.)
- Institute of Experimental Medicine ASCR, 142 20 Prague, Czech Republic;
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, 121 08 Prague, Czech Republic;
| | - Václav Liska
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (V.L.); (J.B.)
| | - Jan Bruha
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (V.L.); (J.B.)
- Institute of Experimental Medicine ASCR, 142 20 Prague, Czech Republic;
| | - Petra Bendova
- Institute of Experimental Medicine ASCR, 142 20 Prague, Czech Republic;
| | - Jacintha O’Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 NHY1 Dublin, Ireland;
| | - Glen Doherty
- Centre for Colorectal Disease, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland; (G.D.); (K.S.); (B.N.)
| | - Kieran Sheahan
- Centre for Colorectal Disease, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland; (G.D.); (K.S.); (B.N.)
| | - Blathnaid Nolan
- Centre for Colorectal Disease, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland; (G.D.); (K.S.); (B.N.)
| | - Pavel Vodicka
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic; (L.V.); (V.V.); (P.V.)
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (V.L.); (J.B.)
- Institute of Experimental Medicine ASCR, 142 20 Prague, Czech Republic;
| | - David J. Hughes
- Cancer Biology and Therapeutics Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland; (M.M.); (N.A.)
- Correspondence: ; Tel.: +353-1-716-6988
| |
Collapse
|
10
|
Mal’tseva VN, Goltyaev MV, Novoselov SV, Varlamova EG. Effects of Sodium Selenite and Dithiothreitol on Expression of Endoplasmic Reticulum Selenoproteins and Apoptosis Markers in MSF7 Breast Adenocarcinoma Cells. Mol Biol 2022. [DOI: 10.1134/s0026893322010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|