1
|
Yanamandra U, Vardhan V, Saxena P, Singh P, Gupta A, Mulajkar D, Grewal R, Nair V. Radiographical Spectrum of High-altitude Pulmonary Edema: A Pictorial Essay. Indian J Crit Care Med 2021; 25:668-674. [PMID: 34316147 PMCID: PMC8286401 DOI: 10.5005/jp-journals-10071-23827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background High-altitude pulmonary edema (HAPE) is a common cause of hospitalization in high altitude areas with significant morbidity. The clinical presentation of HAPE can overlap with a broad spectrum of cardiopulmonary diseases. Also, it is associated with varied radiological manifestations mimicking other conditions and often leading to unnecessary and inappropriate treatment. Patients and methods The primary aim of the study was to study the various radiological manifestations of HAPE through real-world chest radiographs. We present six different chest X-ray patterns of HAPE as a pictorial assay, at initial presentation, and after the resolution of symptoms with supplemental oxygen therapy and bed rest alone. Results HAPE can present as bilateral symmetrical perihilar opacities, bilateral symmetrical diffuse opacities, unilateral diffuse opacities, bilateral asymmetrical focal opacities, and even lobar consolidation with lower zone or less commonly upper zonal predilection. These presentations can mimic many common conditions like heart failure, acute respiratory distress syndrome, pulmonary embolism, aspiration pneumonitis, pneumonia, malignancy, and tuberculosis. Conclusion A holistic clinical–radiological correlation coupled with analysis of the temporal course can help high-altitude physicians in differentiating true HAPE from its mimics. How to cite this article Yanamandra U, Vardhan V, Saxena P, Singh P, Gupta A, Mulajkar D, et al. Radiographical Spectrum of High-altitude Pulmonary Edema: A Pictorial Essay. Indian J Crit Care Med 2021;25(6):668–674.
Collapse
Affiliation(s)
- Uday Yanamandra
- Department of Hematology & Stem Cell Transplant, Army Hospital (R&R), New Delhi, India
| | - Vasu Vardhan
- Department of Pulmonology, Base Hospital, New Delhi, India
| | - Puneet Saxena
- Department of Pulmonology, Army Hospital (R&R), New Delhi, India
| | - Priyanka Singh
- Department of Pulmonology, Army Hospital (R&R), New Delhi, India
| | - Amul Gupta
- Department of Radiology, Base Hospital, New Delhi, India
| | - Deepak Mulajkar
- Department of Oncology, Army Hospital (R&R), New Delhi, India
| | - Rajan Grewal
- Ex Director General, Medical Services (Army), Currently, Vice Chancellor, Sikkim Manipal University, Sikkim, Gangtok, India
| | - Velu Nair
- Department of Haemato-Oncology and Bone Marrow Transplant, Apollo CBCC Cancer Care, Ahmedabad, Gujarat, India
| |
Collapse
|
2
|
Tripathi A, Kumar B, Sagi SSK. Prophylactic efficacy of Quercetin in ameliorating the hypoxia induced vascular leakage in lungs of rats. PLoS One 2019; 14:e0219075. [PMID: 31251771 PMCID: PMC6599121 DOI: 10.1371/journal.pone.0219075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/14/2019] [Indexed: 01/20/2023] Open
Abstract
The objective of the study was to find out the prophylactic efficacy of Quercetin in ameliorating the hypoxia induced vascular leakage in lungs of rats. Male SD rats received different doses of quercetin @ 25mg, 50mg, 100mg and 200mg/Kg BW, 1h prior to hypobaric hypoxia exposure (7,620m, for 6h). Quercetin 50 mg/kg BW supplemented orally 1h prior to hypoxia exposure was considered to be the optimum dose, due to significant reduction (p<0.001) in lung water content and lung transvascular leakage compared to control (hypoxia, 6h). Further, biochemical analysis (ROS, MDA, GSH, GPx, LDH, and albumin) and differential expressions of proteins (IKK-α/β, NFĸB, Nrf-2,TNF-α, ICAM-1, VCAM, P-selectin, Hif-1α, VEGF, TNF-α, TGF-β, INF-γ and IL-4) were determined by western blotting and ELISA. Changes in lung parenchyma were assessed by histopathology. Quercetin (50 mg/kg BW) prophylaxis under hypoxia showed significant reduction in oxidative stress (ROS and MDA), concomitant increase in antioxidants (GSH, GPx and SOD) followed by decreased LDH and albumin extravasation in BAL fluid over hypoxia. Quercetin prophylaxis significantly down regulated hypoxia induced increase in IKKα/β and NFĸB expressions leading to reduction in the levels of pro-inflammatory cytokines (TNF-α and INF-γ) followed by up regulation of anti-inflammatory cytokines (IL-4 and INF-γ) in lungs. Further, hypoxia mediated increase in HIF-1α was stabilized and VEGF levels in lungs were significantly down regulated by quercetin supplementation, leading to reduction in vascular leakage in lungs of rats under hypoxia. However, Quercetin has also enacted as Nrf-2 activator which significantly boosted up the synthesis of GSH under hypoxic condition compared to hypoxia. Histopathological observations further confirmed that quercetin preconditioning has an inhibitory effect on progression of oxidative stress and inflammation via attenuation of NFκB and stabilization HIF-1α in lungs of rats under hypoxia.These studies indicated that quercetin prophylaxis abrogates the possibility of hypobaric hypoxia induced pulmonary edema in rats.
Collapse
Affiliation(s)
- Ankit Tripathi
- Nutrition Division, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Bhuvnesh Kumar
- Nutrition Division, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Sarada S. K. Sagi
- Nutrition Division, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
- * E-mail:
| |
Collapse
|
3
|
Molano Franco D, Nieto Estrada VH, Gonzalez Garay AG, Martí‐Carvajal AJ, Arevalo‐Rodriguez I. Interventions for preventing high altitude illness: Part 3. Miscellaneous and non-pharmacological interventions. Cochrane Database Syst Rev 2019; 4:CD013315. [PMID: 31012483 PMCID: PMC6477878 DOI: 10.1002/14651858.cd013315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND High altitude illness (HAI) is a term used to describe a group of mainly cerebral and pulmonary syndromes that can occur during travel to elevations above 2500 metres (˜ 8200 feet). Acute mountain sickness (AMS), high altitude cerebral oedema (HACE), and high altitude pulmonary oedema (HAPE) are reported as potential medical problems associated with high altitude ascent. In this, the third of a series of three reviews about preventive strategies for HAI, we assessed the effectiveness of miscellaneous and non-pharmacological interventions. OBJECTIVES To assess the clinical effectiveness and adverse events of miscellaneous and non-pharmacological interventions for preventing acute HAI in people who are at risk of developing high altitude illness in any setting. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, LILACS and the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) in January 2019. We adapted the MEDLINE strategy for searching the other databases. We used a combination of thesaurus-based and free-text search terms. We scanned the reference lists and citations of included trials and any relevant systematic reviews that we identified for further references to additional trials. SELECTION CRITERIA We included randomized controlled trials conducted in any setting where non-pharmacological and miscellaneous interventions were employed to prevent acute HAI, including preacclimatization measures and the administration of non-pharmacological supplements. We included trials involving participants who are at risk of developing high altitude illness (AMS or HACE, or HAPE, or both). We included participants with, and without, a history of high altitude illness. We applied no age or gender restrictions. We included trials where the relevant intervention was administered before the beginning of ascent. DATA COLLECTION AND ANALYSIS We used the standard methodological procedures employed by Cochrane. MAIN RESULTS We included 20 studies (1406 participants, 21 references) in this review. Thirty studies (14 ongoing, and 16 pending classification (awaiting)) will be considered in future versions of this suite of three reviews as appropriate. We report the results for the primary outcome of this review (risk of AMS) by each group of assessed interventions.Group 1. Preacclimatization and other measures based on pressureUse of simulated altitude or remote ischaemic preconditioning (RIPC) might not improve the risk of AMS on subsequent exposure to altitude, but this effect is uncertain (simulated altitude: risk ratio (RR) 1.18, 95% confidence interval (CI) 0.82 to 1.71; I² = 0%; 3 trials, 140 participants; low-quality evidence. RIPC: RR 3.0, 95% CI 0.69 to 13.12; 1 trial, 40 participants; low-quality evidence). We found evidence of improvement of this risk using positive end-expiratory pressure (PEEP), but this information was derived from a cross-over trial with a limited number of participants (OR 3.67, 95% CI 1.38 to 9.76; 1 trial, 8 participants; low-quality evidence). We found scarcity of evidence about the risk of adverse events for these interventions.Group 2. Supplements and vitaminsSupplementation of antioxidants, medroxyprogesterone, iron or Rhodiola crenulata might not improve the risk of AMS on exposure to high altitude, but this effect is uncertain (antioxidants: RR 0.58, 95% CI 0.32 to 1.03; 1 trial, 18 participants; low-quality evidence. Medroxyprogesterone: RR 0.71, 95% CI 0.48 to 1.05; I² = 0%; 2 trials, 32 participants; low-quality evidence. Iron: RR 0.65, 95% CI 0.38 to 1.11; I² = 0%; 2 trials, 65 participants; low-quality evidence. R crenulata: RR 1.00, 95% CI 0.78 to 1.29; 1 trial, 125 participants; low-quality evidence). We found evidence of improvement of this risk with the administration of erythropoietin, but this information was extracted from a trial with issues related to risk of bias and imprecision (RR 0.41, 95% CI 0.20 to 0.84; 1 trial, 39 participants; very low-quality evidence). Regarding administration of ginkgo biloba, we did not perform a pooled estimation of RR for AMS due to considerable heterogeneity between the included studies (I² = 65%). RR estimates from the individual studies were conflicting (from 0.05 to 1.03; low-quality evidence). We found scarcity of evidence about the risk of adverse events for these interventions.Group 3. Other comparisonsWe found heterogeneous evidence regarding the risk of AMS when ginkgo biloba was compared with acetazolamide (I² = 63%). RR estimates from the individual studies were conflicting (estimations from 0.11 (95% CI 0.01 to 1.86) to 2.97 (95% CI 1.70 to 5.21); low-quality evidence). We found evidence of improvement when ginkgo biloba was administered along with acetazolamide, but this information was derived from a single trial with issues associated to risk of bias (compared to ginkgo biloba alone: RR 0.43, 95% CI 0.26 to 0.71; 1 trial, 311 participants; low-quality evidence). Administration of medroxyprogesterone plus acetazolamide did not improve the risk of AMS when compared to administration of medroxyprogesterone or acetazolamide alone (RR 1.33, 95% CI 0.50 to 3.55; 1 trial, 12 participants; low-quality evidence). We found scarcity of evidence about the risk of adverse events for these interventions. AUTHORS' CONCLUSIONS This Cochrane Review is the final in a series of three providing relevant information to clinicians, and other interested parties, on how to prevent high altitude illness. The assessment of non-pharmacological and miscellaneous interventions suggests that there is heterogeneous and even contradictory evidence related to the effectiveness of these prophylactic strategies. Safety of these interventions remains as an unclear issue due to lack of assessment. Overall, the evidence is limited due to its quality (low to very low), the relative paucity of that evidence and the number of studies pending classification for the three reviews belonging to this series (30 studies either awaiting classification or ongoing). Additional studies, especially those comparing with pharmacological alternatives (such as acetazolamide) are required, in order to establish or refute the strategies evaluated in this review.
Collapse
Affiliation(s)
- Daniel Molano Franco
- Fundacion Universitaria de Ciencias de la Salud, Hospital de San JoséDepartment of Critical CareCarrera 19 # 8‐32BogotaBogotaColombia11001
| | - Víctor H Nieto Estrada
- Los Cobos Medical Centre. Grupo Investigacion GRIBOSDepartment of Critical CareBogotaBogotaColombia
| | | | | | - Ingrid Arevalo‐Rodriguez
- Hospital Universitario Ramón y Cajal (IRYCIS), CIBER Epidemiology and Public Health (CIBERESP)Clinical Biostatistics UnitCtra. Colmenar Km. 9,100MadridSpain28034
- Cochrane Associate Centre of MadridMadridSpain
- Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC). Facultad de Ciencias de la Salud Eugenio Espejo, Universidad Tecnológica EquinoccialCochrane EcuadorQuitoEcuador
| | | |
Collapse
|
4
|
Gonzalez Garay AG, Molano Franco D, Nieto Estrada VH, Martí‐Carvajal AJ, Arevalo‐Rodriguez I. Interventions for preventing high altitude illness: Part 2. Less commonly-used drugs. Cochrane Database Syst Rev 2018; 3:CD012983. [PMID: 29529715 PMCID: PMC6494375 DOI: 10.1002/14651858.cd012983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND High altitude illness (HAI) is a term used to describe a group of mainly cerebral and pulmonary syndromes that can occur during travel to elevations above 2500 metres (˜ 8200 feet). Acute mountain sickness (AMS), high altitude cerebral oedema (HACE) and high altitude pulmonary oedema (HAPE) are reported as potential medical problems associated with high altitude ascent. In this second review, in a series of three about preventive strategies for HAI, we assessed the effectiveness of five of the less commonly used classes of pharmacological interventions. OBJECTIVES To assess the clinical effectiveness and adverse events of five of the less commonly used pharmacological interventions for preventing acute HAI in participants who are at risk of developing high altitude illness in any setting. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, LILACS and the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) in May 2017. We adapted the MEDLINE strategy for searching the other databases. We used a combination of thesaurus-based and free-text search terms. We scanned the reference lists and citations of included trials and any relevant systematic reviews that we identified for further references to additional trials. SELECTION CRITERIA We included randomized controlled trials conducted in any setting where one of five classes of drugs was employed to prevent acute HAI: selective 5-hydroxytryptamine(1) receptor agonists; N-methyl-D-aspartate (NMDA) antagonist; endothelin-1 antagonist; anticonvulsant drugs; and spironolactone. We included trials involving participants who are at risk of developing high altitude illness (AMS or HACE, or HAPE, or both). We included participants with and without a history of high altitude illness. We applied no age or gender restrictions. We included trials where the relevant medication was administered before the beginning of ascent. We excluded trials using these drugs during ascent or after ascent. DATA COLLECTION AND ANALYSIS We used the standard methodological procedures employed by Cochrane. MAIN RESULTS We included eight studies (334 participants, 9 references) in this review. Twelve studies are ongoing and will be considered in future versions of this review as appropriate. We have been unable to obtain full-text versions of a further 12 studies and have designated them as 'awaiting classification'. Four studies were at a low risk of bias for randomization; two at a low risk of bias for allocation concealment. Four studies were at a low risk of bias for blinding of participants and personnel. We considered three studies at a low risk of bias for blinding of outcome assessors. We considered most studies at a high risk of selective reporting bias.We report results for the following four main comparisons.Sumatriptan versus placebo (1 parallel study; 102 participants)Data on sumatriptan showed a reduction of the risk of AMS when compared with a placebo (risk ratio (RR) = 0.43, CI 95% 0.21 to 0.84; 1 study, 102 participants; low quality of evidence). The one included study did not report events of HAPE, HACE or adverse events related to administrations of sumatriptan.Magnesium citrate versus placebo (1 parallel study; 70 participants)The estimated RR for AMS, comparing magnesium citrate tablets versus placebo, was 1.09 (95% CI 0.55 to 2.13; 1 study; 70 participants; low quality of evidence). In addition, the estimated RR for loose stools was 3.25 (95% CI 1.17 to 8.99; 1 study; 70 participants; low quality of evidence). The one included study did not report events of HAPE or HACE.Spironolactone versus placebo (2 parallel studies; 205 participants)Pooled estimation of RR for AMS was not performed due to considerable heterogeneity between the included studies (I² = 72%). RR from individual studies was 0.40 (95% CI 0.12 to 1.31) and 1.44 (95% CI 0.79 to 2.01; very low quality of evidence). No events of HAPE or HACE were reported. Adverse events were not evaluated.Acetazolamide versus spironolactone (1 parallel study; 232 participants)Data on acetazolamide compared with spironolactone showed a reduction of the risk of AMS with the administration of acetazolamide (RR = 0.36, 95% CI 0.18 to 0.70; 232 participants; low quality of evidence). No events of HAPE or HACE were reported. Adverse events were not evaluated. AUTHORS' CONCLUSIONS This Cochrane Review is the second in a series of three providing relevant information to clinicians and other interested parties on how to prevent high altitude illness. The assessment of five of the less commonly used classes of drugs suggests that there is a scarcity of evidence related to these interventions. Clinical benefits and harms related to potential interventions such as sumatriptan are still unclear. Overall, the evidence is limited due to the low number of studies identified (for most of the comparison only one study was identified); limitations in the quality of the evidence (moderate to low); and the number of studies pending classification (24 studies awaiting classification or ongoing). We lack the large and methodologically sound studies required to establish or refute the efficacy and safety of most of the pharmacological agents evaluated in this review.
Collapse
Affiliation(s)
- Alejandro G Gonzalez Garay
- National Institute of PediatricsMethodology Research UnitInsurgentes Sur 3700 ‐ CCol. Insurgentes Cuicuilco, CoyoacanMexico CityDistrito FederalMexico04530
| | - Daniel Molano Franco
- Fundacion Universitaria de Ciencias de la Salud, Hospital de San JoséDepartment of Critical CareCarrera 19 # 8‐32BogotaBogotaColombia11001
| | - Víctor H Nieto Estrada
- Fundacion Universitaria Sanitas, Colombia ClinicDepartment of Critical CareCarrera 19 # 8‐32BogotaBogotaColombia11001
| | | | - Ingrid Arevalo‐Rodriguez
- Universidad Tecnológica EquinoccialCochrane Ecuador. Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC). Facultad de Ciencias de la Salud Eugenio EspejoAv. Mariscal Sucre s/n y Av. Mariana de JesúsQuitoEcuador
- Hospital Universitario Ramon y Cajal (IRYCIS)Clinical Biostatistics UnitMadridSpain
| | | |
Collapse
|
5
|
STAT3-RXR-Nrf2 activates systemic redox and energy homeostasis upon steep decline in pO 2 gradient. Redox Biol 2017; 14:423-438. [PMID: 29078168 PMCID: PMC5680518 DOI: 10.1016/j.redox.2017.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/30/2017] [Accepted: 10/15/2017] [Indexed: 01/04/2023] Open
Abstract
Hypobaric hypoxia elicits several patho-physiological manifestations, some of which are known to be lethal. Among various molecular mechanisms proposed so far, perturbation in redox state due to imbalance between radical generation and antioxidant defence is promising. These molecular events are also related to hypoxic status of cancer cells and therefore its understanding has extended clinical advantage beyond high altitude hypoxia. In present study, however, the focus was to understand and propose a model for rapid acclimatization of high altitude visitors to enhance their performance based on molecular changes. We considered using simulated hypobaric hypoxia at some established thresholds of high altitude stratification based on known physiological effects. Previous studies have focused on the temporal aspect while overlooking the effects of varying pO2 levels during exposure to hypobaric hypoxia. The pO2 levels, indicative of altitude, are crucial to redox homeostasis and can be the limiting factor during acclimatization to hypobaric hypoxia. In this study we present the effects of acute (24h) exposure to high (3049m; pO2: 71kPa), very high (4573m; pO2: 59kPa) and extreme altitude (7620m; pO2: 40kPa) zones on lung and plasma using semi-quantitative redox specific transcripts and quantitative proteo-bioinformatics workflow in conjunction with redox stress assays. It was observed that direct exposure to extreme altitude caused 100% mortality, which turned into high survival rate after pre-exposure to 59kPa, for which molecular explanation were also found. The pO2 of 59kPa (very high altitude zone) elicits systemic energy and redox homeostatic processes by modulating the STAT3-RXR-Nrf2 trio. Finally we posit the various processes downstream of STAT3-RXR-Nrf2 and the plasma proteins that can be used to ascertain the redox status of an individual.
Collapse
|
6
|
Nieto Estrada VH, Molano Franco D, Medina RD, Gonzalez Garay AG, Martí‐Carvajal AJ, Arevalo‐Rodriguez I. Interventions for preventing high altitude illness: Part 1. Commonly-used classes of drugs. Cochrane Database Syst Rev 2017; 6:CD009761. [PMID: 28653390 PMCID: PMC6481751 DOI: 10.1002/14651858.cd009761.pub2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND High altitude illness (HAI) is a term used to describe a group of cerebral and pulmonary syndromes that can occur during travel to elevations above 2500 metres (8202 feet). Acute hypoxia, acute mountain sickness (AMS), high altitude cerebral oedema (HACE) and high altitude pulmonary oedema (HAPE) are reported as potential medical problems associated with high altitude. In this review, the first in a series of three about preventive strategies for HAI, we assess the effectiveness of six of the most recommended classes of pharmacological interventions. OBJECTIVES To assess the clinical effectiveness and adverse events of commonly-used pharmacological interventions for preventing acute HAI. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (OVID), Embase (OVID), LILACS and trial registries in January 2017. We adapted the MEDLINE strategy for searching the other databases. We used a combination of thesaurus-based and free-text terms to search. SELECTION CRITERIA We included randomized-controlled and cross-over trials conducted in any setting where commonly-used classes of drugs were used to prevent acute HAI. DATA COLLECTION AND ANALYSIS We used standard methodological procedures as expected by Cochrane. MAIN RESULTS We included 64 studies (78 references) and 4547 participants in this review, and classified 12 additional studies as ongoing. A further 12 studies await classification, as we were unable to obtain the full texts. Most of the studies were conducted in high altitude mountain areas, while the rest used low pressure (hypobaric) chambers to simulate altitude exposure. Twenty-four trials provided the intervention between three and five days prior to the ascent, and 23 trials, between one and two days beforehand. Most of the included studies reached a final altitude of between 4001 and 5000 metres above sea level. Risks of bias were unclear for several domains, and a considerable number of studies did not report adverse events of the evaluated interventions. We found 26 comparisons, 15 of them comparing commonly-used drugs versus placebo. We report results for the three most important comparisons: Acetazolamide versus placebo (28 parallel studies; 2345 participants)The risk of AMS was reduced with acetazolamide (risk ratio (RR) 0.47, 95% confidence interval (CI) 0.39 to 0.56; I2 = 0%; 16 studies; 2301 participants; moderate quality of evidence). No events of HAPE were reported and only one event of HACE (RR 0.32, 95% CI 0.01 to 7.48; 6 parallel studies; 1126 participants; moderate quality of evidence). Few studies reported side effects for this comparison, and they showed an increase in the risk of paraesthesia with the intake of acetazolamide (RR 5.53, 95% CI 2.81 to 10.88, I2 = 60%; 5 studies, 789 participants; low quality of evidence). Budenoside versus placebo (2 parallel studies; 132 participants)Data on budenoside showed a reduction in the incidence of AMS compared with placebo (RR 0.37, 95% CI 0.23 to 0.61; I2 = 0%; 2 studies, 132 participants; low quality of evidence). Studies included did not report events of HAPE or HACE, and they did not find side effects (low quality of evidence). Dexamethasone versus placebo (7 parallel studies; 205 participants)For dexamethasone, the data did not show benefits at any dosage (RR 0.60, 95% CI 0.36 to 1.00; I2 = 39%; 4 trials, 176 participants; low quality of evidence). Included studies did not report events of HAPE or HACE, and we rated the evidence about adverse events as of very low quality. AUTHORS' CONCLUSIONS Our assessment of the most commonly-used pharmacological interventions suggests that acetazolamide is an effective pharmacological agent to prevent acute HAI in dosages of 250 to 750 mg/day. This information is based on evidence of moderate quality. Acetazolamide is associated with an increased risk of paraesthesia, although there are few reports about other adverse events from the available evidence. The clinical benefits and harms of other pharmacological interventions such as ibuprofen, budenoside and dexamethasone are unclear. Large multicentre studies are needed for most of the pharmacological agents evaluated in this review, to evaluate their effectiveness and safety.
Collapse
Affiliation(s)
- Víctor H Nieto Estrada
- Fundacion Universitaria Sanitas, Colombia ClinicDepartment of Critical CareCarrera 19 # 8‐32BogotaBogotaColombia11001
| | - Daniel Molano Franco
- Fundacion Universitaria de Ciencias de la Salud, Hospital de San JoséDepartment of Critical CareCarrera 19 # 8‐32BogotaBogotaColombia11001
| | - Roger David Medina
- Fundación Universitaria de Ciencias de la SaludDivision of ResearchCarrera 19 # 8‐32Bogotá D.C.Colombia
| | - Alejandro G Gonzalez Garay
- National Institute of PediatricsMethodology Research UnitInsurgentes Sur 3700 ‐ CCol. Insurgentes Cuicuilco, CoyoacanMexico CityDistrito FederalMexico04530
| | | | - Ingrid Arevalo‐Rodriguez
- Universidad Tecnológica EquinoccialCochrane Ecuador. Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC). Facultad de Ciencias de la Salud Eugenio EspejoAv. Mariscal Sucre s/n y Av. Mariana de JesúsQuitoEcuador
- Hospital Universitario Ramon y Cajal (IRYCIS)Clinical Biostatistics UnitMadridSpain
| | | |
Collapse
|
7
|
Luks AM, Swenson ER, Bärtsch P. Acute high-altitude sickness. Eur Respir Rev 2017; 26:26/143/160096. [PMID: 28143879 PMCID: PMC9488514 DOI: 10.1183/16000617.0096-2016] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/23/2016] [Indexed: 12/28/2022] Open
Abstract
At any point 1–5 days following ascent to altitudes ≥2500 m, individuals are at risk of developing one of three forms of acute altitude illness: acute mountain sickness, a syndrome of nonspecific symptoms including headache, lassitude, dizziness and nausea; high-altitude cerebral oedema, a potentially fatal illness characterised by ataxia, decreased consciousness and characteristic changes on magnetic resonance imaging; and high-altitude pulmonary oedema, a noncardiogenic form of pulmonary oedema resulting from excessive hypoxic pulmonary vasoconstriction which can be fatal if not recognised and treated promptly. This review provides detailed information about each of these important clinical entities. After reviewing the clinical features, epidemiology and current understanding of the pathophysiology of each disorder, we describe the current pharmacological and nonpharmacological approaches to the prevention and treatment of these diseases. Lack of acclimatisation is the main risk factor for acute altitude illness; descent is the optimal treatmenthttp://ow.ly/45d2305JyZ0
Collapse
Affiliation(s)
- Andrew M Luks
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA
| | - Erik R Swenson
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA.,Medical Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Peter Bärtsch
- Dept of Internal Medicine, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Flaherty G, O'Connor R, Johnston N. Altitude training for elite endurance athletes: A review for the travel medicine practitioner. Travel Med Infect Dis 2016; 14:200-11. [PMID: 27040934 DOI: 10.1016/j.tmaid.2016.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/30/2022]
Abstract
High altitude training is regarded as an integral component of modern athletic preparation, especially for endurance sports such as middle and long distance running. It has rapidly achieved popularity among elite endurance athletes and their coaches. Increased hypoxic stress at altitude facilitates key physiological adaptations within the athlete, which in turn may lead to improvements in sea-level athletic performance. Despite much research in this area to date, the exact mechanisms which underlie such improvements remain to be fully elucidated. This review describes the current understanding of physiological adaptation to high altitude training and its implications for athletic performance. It also discusses the rationale and main effects of different training models currently employed to maximise performance. Athletes who travel to altitude for training purposes are at risk of suffering the detrimental effects of altitude. Altitude illness, weight loss, immune suppression and sleep disturbance may serve to limit athletic performance. This review provides an overview of potential problems which an athlete may experience at altitude, and offers specific training recommendations so that these detrimental effects are minimised.
Collapse
Affiliation(s)
- Gerard Flaherty
- School of Medicine, National University of Ireland, Galway, Ireland; School of Medicine, International Medical University, Kuala Lumpur, Malaysia.
| | - Rory O'Connor
- School of Biomedical Science, National University of Ireland, Galway, Ireland.
| | - Niall Johnston
- School of Medicine, National University of Ireland, Galway, Ireland.
| |
Collapse
|
9
|
Abstract
Individuals may seek the advice of medical providers when considering travel to high altitude. This article provides a basic framework for counseling and evaluating such patients. After defining "high altitude" and describing the key environmental features at higher elevations, the physiologic changes that occur at high altitude and how these changes are experienced by the traveler are discussed. Clinical features and strategies for prevention and treatment of the main forms of acute altitude illness are outlined, and frameworks for approaching the common clinical scenarios that may be encountered regarding high-altitude travelers are provided.
Collapse
Affiliation(s)
- Nicholas J Johnson
- Critical Care Medicine, Division of Pulmonary and Critical Care Medicine, Harborview Medical Center, University of Washington, 325 Ninth Avenue, Box 359762, Seattle, WA 98104, USA
| | - Andrew M Luks
- Division of Pulmonary and Critical Care Medicine, Harborview Medical Center, University of Washington, 325 Ninth Avenue, Box 359762, Seattle, WA 98104, USA.
| |
Collapse
|
10
|
Luks AM. Physiology in Medicine: A physiologic approach to prevention and treatment of acute high-altitude illnesses. J Appl Physiol (1985) 2014; 118:509-19. [PMID: 25539941 DOI: 10.1152/japplphysiol.00955.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
With the growing interest in adventure travel and the increasing ease and affordability of air, rail, and road-based transportation, increasing numbers of individuals are traveling to high altitude. The decline in barometric pressure and ambient oxygen tensions in this environment trigger a series of physiologic responses across organ systems and over a varying time frame that help the individual acclimatize to the low oxygen conditions but occasionally lead to maladaptive responses and one or several forms of acute altitude illness. The goal of this Physiology in Medicine article is to provide information that providers can use when counseling patients who present to primary care or travel medicine clinics seeking advice about how to prevent these problems. After discussing the primary physiologic responses to acute hypoxia from the organ to the molecular level in normal individuals, the review describes the main forms of acute altitude illness--acute mountain sickness, high-altitude cerebral edema, and high-altitude pulmonary edema--and the basic approaches to their prevention and treatment of these problems, with an emphasis throughout on the physiologic basis for the development of these illnesses and their management.
Collapse
Affiliation(s)
- Andrew M Luks
- Division of Pulmonary and Critical Care Medicine, University of Washington Seattle, Washington
| |
Collapse
|
11
|
Abstract
High-altitude pulmonary edema (HAPE), a not uncommon form of acute altitude illness, can occur within days of ascent above 2500 to 3000 m. Although life-threatening, it is avoidable by slow ascent to permit acclimatization or with drug prophylaxis. The critical pathophysiology is an excessive rise in pulmonary vascular resistance or hypoxic pulmonary vasoconstriction (HPV) leading to increased microvascular pressures. The resultant hydrostatic stress causes dynamic changes in the permeability of the alveolar capillary barrier and mechanical injurious damage leading to leakage of large proteins and erythrocytes into the alveolar space in the absence of inflammation. Bronchoalveolar lavage and hemodynamic pressure measurements in humans confirm that elevated capillary pressure induces a high-permeability noninflammatory lung edema. Reduced nitric oxide availability and increased endothelin in hypoxia are the major determinants of excessive HPV in HAPE-susceptible individuals. Other hypoxia-dependent differences in ventilatory control, sympathetic nervous system activation, endothelial function, and alveolar epithelial active fluid reabsorption likely contribute additionally to HAPE susceptibility. Recent studies strongly suggest nonuniform regional hypoxic arteriolar vasoconstriction as an explanation for how HPV occurring predominantly at the arteriolar level causes leakage. In areas of high blood flow due to lesser HPV, edema develops due to pressures that exceed the dynamic and structural capacity of the alveolar capillary barrier to maintain normal fluid balance. This article will review the pathophysiology of the vasculature, alveolar epithelium, innervation, immune response, and genetics of the lung at high altitude, as well as therapeutic and prophylactic strategies to reduce the morbidity and mortality of HAPE.
Collapse
Affiliation(s)
- Erik R Swenson
- VA Puget Sound Health Care System, Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | |
Collapse
|
12
|
Martí-Carvajal AJ, Simancas-Racines D, Hidalgo R. Interventions for treating high altitude illness. Hippokratia 2012. [DOI: 10.1002/14651858.cd009567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arturo J Martí-Carvajal
- Universidad Tecnológica Equinoccial; Facultad de Ciencias de la Salud Eugenio Espejo; Quito Ecuador
| | - Daniel Simancas-Racines
- Universidad Tecnológica Equinoccial; Facultad de Ciencias de la Salud Eugenio Espejo; Quito Ecuador
| | - Ricardo Hidalgo
- Universidad Tecnológica Equinoccial; Facultad de Ciencias de la Salud Eugenio Espejo; Quito Ecuador
| |
Collapse
|
13
|
Windsor JS, Rodway G, Mukherjee R, Firth P, Shattock M, Montgomery H. Prolongation of the Corrected QT Complex - A Cause of Sudden Cardiac Death in the Mountain Environment? J ROY ARMY MED CORPS 2011; 157:63-7. [DOI: 10.1136/jramc-157-01-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Abstract
High-altitude illnesses encompass the pulmonary and cerebral syndromes that occur in non-acclimatized individuals after rapid ascent to high altitude. The most common syndrome is acute mountain sickness (AMS) which usually begins within a few hours of ascent and typically consists of headache variably accompanied by loss of appetite, nausea, vomiting, disturbed sleep, fatigue, and dizziness. With millions of travelers journeying to high altitudes every year and sleeping above 2,500 m, acute mountain sickness is a wide-spread clinical condition. Risk factors include home elevation, maximum altitude, sleeping altitude, rate of ascent, latitude, age, gender, physical condition, intensity of exercise, pre-acclimatization, genetic make-up, and pre-existing diseases. At higher altitudes, sleep disturbances may become more profound, mental performance is impaired, and weight loss may occur. If ascent is rapid, acetazolamide can reduce the risk of developing AMS, although a number of high-altitude travelers taking acetazolamide will still develop symptoms. Ibuprofen can be effective for headache. Symptoms can be rapidly relieved by descent, and descent is mandatory, if at all possible, for the management of the potentially fatal syndromes of high-altitude pulmonary and cerebral edema. The purpose of this review is to combine a discussion of specific risk factors, prevention, and treatment options with a summary of the basic physiologic responses to the hypoxia of altitude to provide a context for managing high-altitude illnesses and advising the non-acclimatized high-altitude traveler.
Collapse
|
15
|
Luks AM, Stout K, Swenson ER. Evaluating the safety of high-altitude travel in patients with adult congenital heart disease. CONGENIT HEART DIS 2010; 5:220-32. [PMID: 20576041 DOI: 10.1111/j.1747-0803.2010.00415.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
As medical management and surgical techniques continue to improve, patients with congenital heart disease are surviving further into adulthood and seeking to participate in multiple activities. Given the increasing popularity of adventure recreation, it is likely that many of these individuals will express interest in travel to and activities at high altitude. At first glance, the hypoxia associated with acute altitude exposure would appear to pose high risks for patients with underlying cardiopulmonary disease, but few studies have systematically addressed these concerns in the adult congenital heart disease population. In this review, we consider the safety of high-altitude travel in these patients. After reviewing the primary cardiopulmonary responses to acute hypoxia and the risks of high altitude in all individuals regardless of their underlying health status, we consider the risks in adult congenital heart disease patients, in particular. We focus on broad concerns that should be considered in all patients such as whether they have underlying pulmonary hypertension, the adequacy of their ventilatory responses, and their ability to compensate for hypoxemia and right-to-left shunting. We then conclude by providing basic recommendations for pretravel assessment in patients with congenital heart disease of moderate or great complexity.
Collapse
Affiliation(s)
- Andrew M Luks
- Department of Medicine, University of Washington, Harborview Medical Center, Division of Pulmonary and Critical Care Medicine, 325 Ninth Avenue, Box 359762, Seattle, WA 98104, USA.
| | | | | |
Collapse
|
16
|
Koch RO, Burtscher M. Do we have a best practice for treating high altitude pulmonary edema? High Alt Med Biol 2009; 9:343-4. [PMID: 19115921 DOI: 10.1089/ham.2008.1063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|