1
|
Jia YJ, Du WQ, Zong ZW, Jiang RQ, Zhong X, Ye Z, Li TS, Yang HY, Xiao LP, Fan J. Hemostatic Effects of Bio-Zeolite Gauze and QuikClot Combat Gauze on Major Bleeding in Rabbits Acutely Exposed to High Altitude. PREHOSP EMERG CARE 2022; 27:592-599. [PMID: 36125429 DOI: 10.1080/10903127.2022.2126912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
Objective: Hemostatic gauze application is an effective way to control major bleeding, which is the most common cause of death in trauma in both civilian and military settings. Coagulation derangement after acute exposure to high altitude might alter the effects of hemostatic gauzes. The present study aimed to observe the hemostatic effects of bio-zeolite gauze (BZG) and QuikClot Combat Gauze® (QCG) on major bleeding in rabbits acutely exposed to high altitude.Methods: Sixty rabbits were randomly and evenly divided into six groups. Animal models of simulated blast- and fragment-induced inguinal major bleeding were prepared in lower altitude and high-altitude areas, and BZG, QCG, and ordinary gauze without hemostatic material were used to control bleeding. The primary outcomes included immediate hemostasis rate, blood loss, and survival rate, while the secondary outcomes included hemodynamic parameters, laboratory examinations, and coagulation-relevant markers.Results: The overall effects of BZG and QCG were better than those of ordinary gauze, with a higher immediate hemostatic rate, less blood loss, and higher survival rate at 90 min after gauze application and higher red blood cell and platelet counts and lower creatinine level at 30 min after gauze application in lower altitude. The concentrations of coagulation factor XII and factor X in rabbits acutely exposed to high altitude were significantly lower than those in lower altitude. At high altitude, the hemostatic effects of BZG did not decrease significantly compared to those in the lower altitude, whereas those of ordinary gauze and QCG decreased significantly at high altitude compared to those in the lower altitude.Conclusions: Coagulation derangement after acute exposure to high altitude has negative effects on ordinary gauze and QCG but has no significant negative hemostatic effects on BZG.
Collapse
Affiliation(s)
- Yi-Jun Jia
- State key Laboratory of Trauma, Burn and Combined injuries, Department of Combat Casualty Care, Training Base for Health Care, Army Medical University, Chongqing, China
| | - Wen-Qiong Du
- State key Laboratory of Trauma, Burn and Combined injuries, Department of Combat Casualty Care, Training Base for Health Care, Army Medical University, Chongqing, China
| | - Zhao-Wen Zong
- State key Laboratory of Trauma, Burn and Combined injuries, Department of Combat Casualty Care, Training Base for Health Care, Army Medical University, Chongqing, China
| | - Ren-Qing Jiang
- State key Laboratory of Trauma, Burn and Combined injuries, Department of Combat Casualty Care, Training Base for Health Care, Army Medical University, Chongqing, China
| | - Xin Zhong
- State key Laboratory of Trauma, Burn and Combined injuries, Department of Combat Casualty Care, Training Base for Health Care, Army Medical University, Chongqing, China
| | - Zhao Ye
- State key Laboratory of Trauma, Burn and Combined injuries, Department of Combat Casualty Care, Training Base for Health Care, Army Medical University, Chongqing, China
| | - Tan-Shi Li
- Department of Emergency, General Hospital of PLA, Beijing, China
| | - Hao-Yang Yang
- State key Laboratory of Trauma, Burn and Combined injuries, Department of Combat Casualty Care, Training Base for Health Care, Army Medical University, Chongqing, China
| | - Li-Ping Xiao
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Jie Fan
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, China
| |
Collapse
|