1
|
Santamorena MM, Tischer-Zimmermann S, Bonifacius A, Mireisz CNM, Costa B, Khan F, Kulkarni U, Lauruschkat CD, Sampaio KL, Stripecke R, Blasczyk R, Maecker-Kolhoff B, Kraus S, Schlosser A, Cicin-Sain L, Kalinke U, Eiz-Vesper B. Engineered HCMV-infected APCs enable the identification of new immunodominant HLA-restricted epitopes of anti-HCMV T-cell immunity. HLA 2024; 103:e15541. [PMID: 38923358 DOI: 10.1111/tan.15541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024]
Abstract
Complications due to HCMV infection or reactivation remain a challenging clinical problem in immunocompromised patients, mainly due to insufficient or absent T-cell functionality. Knowledge of viral targets is crucial to improve monitoring of high-risk patients and optimise antiviral T-cell therapy. To expand the epitope spectrum, genetically-engineered dendritic cells (DCs) and fibroblasts were designed to secrete soluble (s)HLA-A*11:01 and infected with an HCMV mutant lacking immune evasion molecules (US2-6 + 11). More than 700 HLA-A*11:01-restricted epitopes, including more than 50 epitopes derived from a broad range of HCMV open-reading-frames (ORFs) were identified by mass spectrometry and screened for HLA-A*11:01-binding using established prediction tools. The immunogenicity of the 24 highest scoring new candidates was evaluated in vitro in healthy HLA-A*11:01+/HCMV+ donors. Thus, four subdominant epitopes and one immunodominant epitope, derived from the anti-apoptotic protein UL36 and ORFL101C (A11SAL), were identified. Their HLA-A*11:01 complex stability was verified in vitro. In depth analyses revealed highly proliferative and cytotoxic memory T-cell responses against A11SAL, with T-cell responses comparable to the immunodominant HLA-A*02:01-restricted HCMVpp65NLV epitope. A11SAL-specific T cells were also detectable in vivo in immunosuppressed transplant patients and shown to be effective in an in vitro HCMV-infection model, suggesting their crucial role in inhibiting viral replication and improvement of patient's outcome. The developed in vitro pipeline is the first to utilise genetically-engineered DCs to identify naturally presented immunodominant HCMV-derived epitopes. It therefore offers advantages over in silico predictions, is transferable to other HLA alleles, and will significantly expand the repertoire of viral targets to improve therapeutic options.
Collapse
Affiliation(s)
- Maria Michela Santamorena
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| | - Chiara Noemi-Marie Mireisz
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Fawad Khan
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Upasana Kulkarni
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | - Renata Stripecke
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Institute of Translational Immuno-oncology, Cologne, Germany
- German Center for Infections Research (DZIF) Bonn-Cologne, Cologne, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Britta Maecker-Kolhoff
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
- German Center for Infections Research (DZIF) Bonn-Cologne, Cologne, Germany
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| | - Luka Cicin-Sain
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
2
|
Thongchot S, Aksonnam K, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Nucleolin‑based targeting strategies in cancer treatment: Focus on cancer immunotherapy (Review). Int J Mol Med 2023; 52:81. [PMID: 37477132 PMCID: PMC10555485 DOI: 10.3892/ijmm.2023.5284] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
The benefits of treating several types of cancers using immunotherapy have recently been established. The overexpression of nucleolin (NCL) in a number of types of cancer provides an attractive antigen target for the development of novel anticancer immunotherapeutic treatments. NCL is a multifunctional protein abundantly distributed in the nucleus, cytoplasm and cell membrane. It influences carcinogenesis, and the proliferation, survival and metastasis of cancer cells, leading to cancer progression. Additionally, the meta‑analysis of total and cytoplasmic NCL overexpression indicates a poor prognosis of patients with breast cancer. The AS1411 aptamers currently appear to have therapeutic action in the phase II clinical trial. The authors' research group has recently explored the anticancer function of NCL through the activation of T cells by dendritic cell‑based immunotherapy. The present review describes and discusses the mechanisms through which the multiple functions of NCL can participate in the progression of cancer. In addition, the studies that define the utility of NCL‑dependent anticancer therapies are summarized, with specific focus being paid to cancer immunotherapeutic approaches.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Krittaya Aksonnam
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| |
Collapse
|
3
|
Jirapongwattana N, Thongchot S, Chiraphapphaiboon W, Chieochansin T, Sa-Nguanraksa D, Warnnissorn M, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Mesothelin‑specific T cell cytotoxicity against triple negative breast cancer is enhanced by 40s ribosomal protein subunit 3‑treated self‑differentiated dendritic cells. Oncol Rep 2022; 48:127. [PMID: 35616135 PMCID: PMC9164262 DOI: 10.3892/or.2022.8338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/12/2022] [Indexed: 11/05/2022] Open
Abstract
Triple negative breast cancer (TNBC) lacks targeted treatment resulting in poor prognosis. Targeting overexpressing mesothelin (MSLN) using MSLN‑specific T cells is an attractive treatment approach and the aim of the present study. The expression of MSLN in human TNBC paraffin sections was analyzed by immunohistochemistry. Lentiviral vector harbored granulocyte‑macrophage colony stimulating factor (GM‑CSF), interleukin‑4 (IL‑4) and MSLN cDNAs was constructed to generate self‑differentiated myeloid‑derived antigen‑presenting‑cells reactive against tumor expressing MSLN dendritic cell (MSLN‑SmartDC) for MSLN‑specific T cell activation. The results showed high MSLN in 32.8% of all breast cancer subtypes and 57% in TNBC. High MSLN was significantly associated with TNBC subtype and the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2. MSLN‑SmartDC exhibited comparable phenotype to DC generated by exogenous cytokine treatment and an addition of 40s ribosomal protein subunit 3 (RPS3), a toll‑like receptor 4 ligand, enhanced DC maturation and function by upregulation of CD40, CD80 and CD83 expressions and IL‑12p70 secretion. MSLN‑specific CD8+CD69+ IFN‑γ+ T cells were detected in T cells activated by both MSLN‑SmartDC and RPS3‑MSLN‑SmartDC. MSLN‑specific T cells activated by these DCs showed more specific killing capability against naturally expressed MSLN‑HCC70 and artificially MSLN‑overexpressing MDA‑MB‑231 compared with parental MDA‑MB‑231 in both two dimensional (2D)‑ and 3D‑culture systems. In conclusion, the results demonstrated the efficacy of MSLN‑SmartDC to promote MSLN‑specific T cells response against TNBC and RPS3 can enhance the cytolytic activity of these T cells providing an alternative treatment approach for patients with TNBC.
Collapse
Affiliation(s)
- Niphat Jirapongwattana
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wannasiri Chiraphapphaiboon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE‑CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thaweesak Chieochansin
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE‑CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Doonyapat Sa-Nguanraksa
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Malee Warnnissorn
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE‑CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
4
|
Luangwattananun P, Chiraphapphaiboon W, Thuwajit C, Junking M, Yenchitsomanus PT. Activation of cytotoxic T lymphocytes by self-differentiated myeloid-derived dendritic cells for killing breast cancer cells expressing folate receptor alpha protein. Bioengineered 2022; 13:14188-14203. [PMID: 35734827 PMCID: PMC9342379 DOI: 10.1080/21655979.2022.2084262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Adoptive cell transfer (ACT) is a promising approach for cancer treatment. Activation of T lymphocytes by self-differentiated myeloid-derived antigen-presenting-cells reactive against tumor (SmartDC) resulted in specific anti-cancer function. Folate receptor alpha (FRα) is highly expressed in breast cancer (BC) cells and thus potential to be a target antigen for ACT. To explore the SmartDC technology for treatment of BC, we create SmartDC expressing FRα antigen (SmartDC-FRα) for activation of FRα-specific T lymphocytes. Human primary monocytes were transduced with lentiviruses containing tri-cistronic complementary DNA sequences encoding granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-4 (IL-4), and FRα to generate SmartDC-FRα. Autologous T lymphocytes were activated by SmartDC-FRα by coculture. The activated T lymphocytes exhibited enhanced cytotoxicity against FRα-expressing BC cell cultures. Up to 84.9 ± 6.2% of MDA-MB-231 and 89.7 ± 1.9% of MCF-7 BC cell lines were specifically lysed at an effector-to-target ratio of 20:1. The cytotoxicity of T lymphocytes activated by SmartDC-FRα was also demonstrated in three-dimensional (3D) spheroid culture of FRα-expressing BC cells marked by size reduction and spheroid disruption. This study thus portray the potential development of T lymphocytes activated by SmartDC-FRα as ACT in FRα-expressing BC treatment.
Collapse
Affiliation(s)
- Piriya Luangwattananun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, Thailand
| | - Wannasiri Chiraphapphaiboon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, Thailand
| | - Chanitra Thuwajit
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, Thailand
| |
Collapse
|
5
|
Thongchot S, Jirapongwattana N, Luangwattananun P, Chiraphapphaiboon W, Chuangchot N, Sa-nguanraksa D, O-Charoenrat P, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Adoptive Transfer of Anti-Nucleolin T Cells Combined with PD-L1 Inhibition against Triple-Negative Breast Cancer. Mol Cancer Ther 2022; 21:727-739. [PMID: 35313339 PMCID: PMC9377762 DOI: 10.1158/1535-7163.mct-21-0823] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/21/2021] [Accepted: 03/02/2022] [Indexed: 01/18/2023]
Abstract
Dendritic cell (DC)-based T-cell activation is an alternative immunotherapy in breast cancer. The anti-programmed death ligand 1 (PD-L1) can enhance T-cell function. Nucleolin (NCL) is overexpressed in triple-negative breast cancer (TNBC). The regulation of PD-L1 expression through autophagy and the anti-PD-L1 peptide to help sensitize T cells for NCL-positive TNBC cell killing has not been evaluated. Results showed the worst clinical outcome in patients with high NCL and PD-L1. Self-differentiated myeloid-derived antigen-presenting cells reactive against tumors presenting NCL or SmartDCs-NCL producing GM-CSF and IL-4, could activate NCL-specific T cells. SmartDCs-NCL plus recombinant human ribosomal protein substrate 3 (RPS3) successfully induced maturation and activation of DCs characterized by the reduction of CD14 and the induction of CD11c, CD40, CD80, CD83, CD86, and HLA-DR. Interestingly, SmartDCs-NCL plus RPS3 in combination with anti-PD-L1 peptide revealed significant killing activity of the effector NCL-specific T cells against NCLHigh/PD-L1High MDA-MB-231 and NCLHigh/PD-L1High HCC70 TNBC cells at the effector: a target ratio of 5:1 in 2-D and 10:1 in the 3-D culture system; and increments of IFNγ by the ELISpot assay. No killing effect was revealed in MCF-10A normal mammary cells. Mechanistically, NCL-specific T-cell-mediated TNBC cell killing was through both apoptotic and autophagic pathways. Induction of autophagy by curcumin, an autophagic stimulator, inhibited the expression of PD-L1 and enhanced cytolytic activity of NCL-specific T cells. These findings provide the potential clinical approaches targeting NCLHigh/PD-L1High TNBC cells with NCL-specific T cells in combination with a PD-L1 inhibitor or autophagic stimulator.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Niphat Jirapongwattana
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piriya Luangwattananun
- Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wannasiri Chiraphapphaiboon
- Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biochemistry, International Graduate Program in Medical Biochemistry and Molecular Biology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nisa Chuangchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Doonyapat Sa-nguanraksa
- Department of Clinical Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-thai Yenchitsomanus
- Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Monocytes reprogrammed with lentiviral vectors co-expressing GM-CSF, IFN-α2 and antigens for personalized immune therapy of acute leukemia pre- or post-stem cell transplantation. Cancer Immunol Immunother 2019; 68:1891-1899. [PMID: 31628525 PMCID: PMC6851032 DOI: 10.1007/s00262-019-02406-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/29/2019] [Indexed: 01/09/2023]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults and overall survival remains poor. Chemotherapy is the standard of care for intensive induction therapy. Patients who achieve a complete remission require post-remission therapies to prevent relapse. There is no standard of care for patients with minimal residual disease (MRD), and stem cell transplantation is a salvage therapy. Considering the AML genetic heterogeneity and the leukemia immune-suppressive properties, novel cellular immune therapies to effectively harness immunological responses to prevent relapse are needed. We developed a novel modality of immune therapy consisting of monocytes reprogrammed with lentiviral vectors expressing GM-CSF, IFN-α and antigens. Preclinical studies in humanized mice showed that the reprogrammed monocytes self-differentiated into highly viable induced dendritic cells (iDCs) in vivo which migrated effectively to lymph nodes, producing remarkable effects in the de novo regeneration of T and B cell responses. For the first-in-man clinical trial, the patient’s monocytes will be transduced with an integrase-defective tricistronic lentiviral vector expressing GM-CSF, IFN-α and a truncated WT1 antigen. For transplanted patients, pre-clinical development of iDCs co-expressing cytomegalovirus antigens is ongoing. To simplify the product chain for a de-centralized supply model, we are currently exploring a closed automated system for a short two-day manufacturing of iDCs. A phase I clinical trial study is in preparation for immune therapy of AML patients with MRD. The proposed cell therapy can fill an important gap in the current and foreseeable future immunotherapies of AML.
Collapse
|
7
|
Panya A, Thepmalee C, Sawasdee N, Sujjitjoon J, Phanthaphol N, Junking M, Wongkham S, Yenchitsomanus PT. Cytotoxic activity of effector T cells against cholangiocarcinoma is enhanced by self-differentiated monocyte-derived dendritic cells. Cancer Immunol Immunother 2018; 67:1579-1588. [PMID: 30056600 PMCID: PMC11028072 DOI: 10.1007/s00262-018-2212-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/17/2018] [Indexed: 12/29/2022]
Abstract
Cholangiocarcinoma (CCA) is a cancer of the bile ducts that is associated with poor prognosis and poor treatment outcome. Approximately one-third of CCA patients can undergo surgery, but the recurrence rate is high and chemotherapy often cannot satisfactorily prolong survival. Cellular immunotherapy based on adoptive T-cell transfer is a potential treatment for CCA; however, the development of this technology and the search for an appropriate tumor-associated antigen are still ongoing. To enhance the cytotoxic activity of effector T cells against CCA, we developed self-differentiated monocyte-derived dendritic cells (SD-DC) presenting cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A), which is an overexpressed protein that plays a role in the regulation of tumor growth to activate T cells for CCA cell killing. Dendritic cells (DCs) transduced with lentivirus harboring tri-cistronic cDNA sequences (SD-DC-PR) could produce granulocyte-macrophage colony-stimulating factor, interleukin-4, and PRKAR1A. SD-DC showed similar phenotypes to those of DCs derived by conventional method. Autologous effector T cells (CD3+, CD8+) activated by SD-DC-PR exhibited greater cytotoxic activity against CCA than those activated by conventionally-derived DCs. Effector T cells activated by SD-DC-PR killed 60% of CCA cells at an effector-to-target ratio of 15:1, which is approximately twofold greater than the cell killing performance of those stimulated with control DC. The cytotoxic activities of effector T cells activated by SD-DC-PR against CCA cells were significantly associated with the expression levels of PRKR1A in CCA cells. This finding that SD-DC-PR effectively stimulated autologous effector T cells to kill CCA cells may help to accelerate the development of novel therapies for treating CCA.
Collapse
Affiliation(s)
- Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), 4th Floor Siriraj Medical Research Center (SiMR), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chutamas Thepmalee
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), 4th Floor Siriraj Medical Research Center (SiMR), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
- Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nunghathai Sawasdee
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), 4th Floor Siriraj Medical Research Center (SiMR), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Jatuporn Sujjitjoon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), 4th Floor Siriraj Medical Research Center (SiMR), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Nattaporn Phanthaphol
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), 4th Floor Siriraj Medical Research Center (SiMR), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
- Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), 4th Floor Siriraj Medical Research Center (SiMR), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), 4th Floor Siriraj Medical Research Center (SiMR), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
8
|
Gándara C, Affleck V, Stoll EA. Manufacture of Third-Generation Lentivirus for Preclinical Use, with Process Development Considerations for Translation to Good Manufacturing Practice. Hum Gene Ther Methods 2018; 29:1-15. [PMID: 29212357 PMCID: PMC5806069 DOI: 10.1089/hgtb.2017.098] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Lentiviral vectors are used in laboratories around the world for in vivo and ex vivo delivery of gene therapies, and increasingly clinical investigation as well as preclinical applications. The third-generation lentiviral vector system has many advantages, including high packaging capacity, stable gene expression in both dividing and post-mitotic cells, and low immunogenicity in the recipient organism. Yet, the manufacture of these vectors is challenging, especially at high titers required for direct use in vivo, and further challenges are presented by the process of translating preclinical gene therapies toward manufacture of products for clinical investigation. The goals of this paper are to report the protocol for manufacturing high-titer third-generation lentivirus for preclinical testing and to provide detailed information on considerations for translating preclinical viral vector manufacture toward scaled-up platforms and processes in order to make gene therapies under Good Manufacturing Practice that are suitable for clinical trials.
Collapse
Affiliation(s)
- Carolina Gándara
- 1 Institute of Neuroscience, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Controlling Abnormal Network Dynamics using Optogenetics (CANDO) Consortium, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Valerie Affleck
- 1 Institute of Neuroscience, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Controlling Abnormal Network Dynamics using Optogenetics (CANDO) Consortium, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Elizabeth Ann Stoll
- 1 Institute of Neuroscience, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Controlling Abnormal Network Dynamics using Optogenetics (CANDO) Consortium, Newcastle University , Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Abstract
Lentiviral vectors (LVs) developed in the past two decades for research and pre-clinical purposes have entered clinical trials with remarkable safety and efficacy performances. Development and clinical testing of LVs for improvement of human immunity showed major advantages in comparison to other viral vector systems. Robust and persisted transduction efficiency of blood cells with LVs, resulted into a broad range of target cells for immune therapeutic approaches: from hematopoietic stem cells and precursor cells for correction of immune deficiencies, up to effector lymphoid and myeloid cells. T cells engineered for expression of chimeric antigen receptors (CARs) or epitope-specific transgenic T cell receptors (TCRs) are in several cancer immune therapy clinical trials worldwide. Development of engineered dendritic cells is primed for clinical trials for cancer and chronic infections. Technological adaptations for ex vivo cell manipulations are here discussed and presented based on properties and uses of the target cell. For future development of off-shelf immune therapies, direct in vivo administration of lentiviral vectors is warranted and intended. Approaches for lentiviral in vivo targeting to maximize immune therapeutic success are discussed.
Collapse
|
10
|
Yang F, Liu S, Liu X, Liu L, Luo M, Qi S, Xu G, Qiao S, Lv X, Li X, Fu L, Luo Q, Zhang Z. In Vivo Visualization of Tumor Antigen-containing Microparticles Generated in Fluorescent-protein-elicited Immunity. Theranostics 2016; 6:1453-66. [PMID: 27375792 PMCID: PMC4924512 DOI: 10.7150/thno.14145] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 05/05/2016] [Indexed: 02/07/2023] Open
Abstract
In vivo optical spatio-temporal imaging of the tumor microenvironment is useful to explain how tumor immunotherapies work. However, the lack of fluorescent antigens with strong immunogenicity makes it difficult to study the dynamics of how tumors are eliminated by any given immune response. Here, we develop an effective fluorescent model antigen based on the tetrameric far-red fluorescent protein KatushkaS158A (tfRFP), which elicits both humoral and cellular immunity. We use this fluorescent antigen to visualize the dynamic behavior of immunocytes as they attack and selectively eliminate tfRFP-expressing tumors in vivo; swarms of immunocytes rush toward tumors with high motility, clusters of immunocytes form quickly, and numerous antigen-antibody complexes in the form of tfRFP(+) microparticles are generated in the tumor areas and ingested by macrophages in the tumor microenvironment. Therefore, tfRFP, as both a model antigen and fluorescent reporter, is a useful tool to visualize specific immune responses in vivo.
Collapse
Affiliation(s)
- Fei Yang
- 1. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- 2. MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shun Liu
- 1. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- 2. MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiuli Liu
- 1. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- 2. MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lei Liu
- 1. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- 2. MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Meijie Luo
- 1. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- 2. MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuhong Qi
- 1. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- 2. MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoqiang Xu
- 1. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- 2. MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sha Qiao
- 1. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- 2. MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaohua Lv
- 1. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- 2. MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangning Li
- 1. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- 2. MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ling Fu
- 1. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- 2. MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingming Luo
- 1. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- 2. MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhihong Zhang
- 1. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- 2. MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
11
|
Cryopreservation in Closed Bag Systems as an Alternative to Clean Rooms for Preparations of Peripheral Blood Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 951:67-76. [PMID: 27837555 DOI: 10.1007/978-3-319-45457-3_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Autologous and allogeneic stem cell transplantation (SCT) represents a therapeutic option widely used for hematopoietic malignancies. One important milestone in the development of this treatment strategy was the development of effective cryopreservation technologies resulting in a high quality with respect to cell viability as well as lack of contamination of the graft.Stem cell preparations have been initially performed within standard laboratories as it is routinely still the case in many countries. With the emergence of cleanrooms, manufacturing of stem cell preparations within these facilities has become a new standard mandatory in Europe. However, due to high costs and laborious procedures, novel developments recently emerged using closed bag systems as reliable alternatives to conventional cleanrooms. Several hurdles needed to be overcome including the addition of the cryoprotectant dimethylsulfoxide (DMSO) as a relevant manipulation. As a result of the development, closed bag systems proved to be comparable in terms of product quality and patient outcome to cleanroom products. They also comply with the strict regulations of good manufacturing practice.With closed systems being available, costs and efforts of a cleanroom facility may be substantially reduced in the future. The process can be easily extended for other cell preparations requiring minor modifications as donor lymphocyte preparations. Moreover, novel developments may provide solutions for the production of advanced-therapy medicinal products in closed systems.
Collapse
|
12
|
Sundarasetty BS, Kloess S, Oberschmidt O, Naundorf S, Kuehlcke K, Daenthanasanmak A, Gerasch L, Figueiredo C, Blasczyk R, Ruggiero E, Fronza R, Schmidt M, von Kalle C, Rothe M, Ganser A, Koehl U, Stripecke R. Generation of lentivirus-induced dendritic cells under GMP-compliant conditions for adaptive immune reconstitution against cytomegalovirus after stem cell transplantation. J Transl Med 2015. [PMID: 26198406 PMCID: PMC4511080 DOI: 10.1186/s12967-015-0599-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Reactivation of latent viruses such as human cytomegalovirus (HCMV) after allogeneic hematopoietic stem cell transplantation (HSCT) results in high morbidity and mortality. Effective immunization against HCMV shortly after allo-HSCT is an unmet clinical need due to delayed adaptive T cell development. Donor-derived dendritic cells (DCs) have a critical participation in stimulation of naïve T cells and immune reconstitution, and therefore adoptive DC therapy could be used to protect patients after HSCT. However, previous methods for ex vivo generation of adoptive donor-derived DCs were complex and inconsistent, particularly regarding cell viability and potency after thawing. We have previously demonstrated in humanized mouse models of HSCT the proof-of-concept of a novel modality of lentivirus-induced DCs (“SmyleDCpp65”) that accelerated antigen-specific T cell development. Methods Here we demonstrate the feasibility of good manufacturing practices (GMP) for production of donor-derived DCs consisting of monocytes from peripheral blood transduced with an integrase-defective lentiviral vector (IDLV, co-expressing GM-CSF, IFN-α and the cytomegalovirus antigen pp65) that were cryopreserved and thawed. Results Upscaling and standardized production of one lot of IDLV and three lots of SmyleDCpp65 under GMP-compliant conditions were feasible. Analytical parameters for quality control of SmyleDCpp65 identity after thawing and potency after culture were defined. Cell recovery, uniformity, efficacy of gene transfer, purity and viability were high and consistent. SmyleDCpp65 showed only residual and polyclonal IDLV integration, unbiased to proto-oncogenic hot-spots. Stimulation of autologous T cells by GMP-grade SmyleDCpp65 was validated. Conclusion These results underscore further developments of this individualized donor-derived cell vaccine to accelerate immune reconstitution against HCMV after HSCT in clinical trials. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0599-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bala Sai Sundarasetty
- REBIRTH, Regenerative Immune Therapies Applied, Hannover Medical School, OE6862, Hans Borst Zentrum, Carl Neuberg Strasse 1, 30625, Hannover, Germany. .,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, OE6862, Hans Borst Zentrum, Carl Neuberg Strasse 1, 30625, Hannover, Germany.
| | - Stephan Kloess
- Institute of Cellular Therapeutics and GMP Core Facility IFB-Tx, Hannover Medical School, Hannover, Germany.
| | - Olaf Oberschmidt
- Institute of Cellular Therapeutics and GMP Core Facility IFB-Tx, Hannover Medical School, Hannover, Germany.
| | | | | | - Anusara Daenthanasanmak
- REBIRTH, Regenerative Immune Therapies Applied, Hannover Medical School, OE6862, Hans Borst Zentrum, Carl Neuberg Strasse 1, 30625, Hannover, Germany. .,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, OE6862, Hans Borst Zentrum, Carl Neuberg Strasse 1, 30625, Hannover, Germany.
| | - Laura Gerasch
- REBIRTH, Regenerative Immune Therapies Applied, Hannover Medical School, OE6862, Hans Borst Zentrum, Carl Neuberg Strasse 1, 30625, Hannover, Germany. .,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, OE6862, Hans Borst Zentrum, Carl Neuberg Strasse 1, 30625, Hannover, Germany.
| | - Constanca Figueiredo
- REBIRTH, Tolerogenic Cell Therapy, Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany.
| | - Rainer Blasczyk
- REBIRTH, Tolerogenic Cell Therapy, Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany.
| | - Eliana Ruggiero
- Division of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany.
| | - Raffaele Fronza
- Division of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany.
| | - Manfred Schmidt
- Division of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany.
| | - Christof von Kalle
- Division of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany.
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, OE6862, Hans Borst Zentrum, Carl Neuberg Strasse 1, 30625, Hannover, Germany.
| | - Ulrike Koehl
- Institute of Cellular Therapeutics and GMP Core Facility IFB-Tx, Hannover Medical School, Hannover, Germany.
| | - Renata Stripecke
- REBIRTH, Regenerative Immune Therapies Applied, Hannover Medical School, OE6862, Hans Borst Zentrum, Carl Neuberg Strasse 1, 30625, Hannover, Germany. .,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, OE6862, Hans Borst Zentrum, Carl Neuberg Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
13
|
Sundarasetty BS, Chan L, Darling D, Giunti G, Farzaneh F, Schenck F, Naundorf S, Kuehlcke K, Ruggiero E, Schmidt M, von Kalle C, Rothe M, Hoon DSB, Gerasch L, Figueiredo C, Koehl U, Blasczyk R, Gutzmer R, Stripecke R. Lentivirus-induced 'Smart' dendritic cells: Pharmacodynamics and GMP-compliant production for immunotherapy against TRP2-positive melanoma. Gene Ther 2015; 22:707-20. [PMID: 25965393 PMCID: PMC4561294 DOI: 10.1038/gt.2015.43] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
Monocyte-derived conventional dendritic cells (ConvDCs) loaded with melanoma antigens showed modest responses in clinical trials. Efficacy studies were hampered by difficulties in ConvDC manufacturing and low potency. Overcoming these issues, we demonstrated higher potency of lentiviral vector (LV)-programmed DCs. Monocytes were directly induced to self-differentiate into DCs (SmartDC-TRP2) upon transduction with a tricistronic LV encoding for cytokines (granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4)) and a melanoma antigen (tyrosinase-related protein 2 (TRP2)). Here, SmartDC-TRP2 generated with monocytes from five advanced melanoma patients were tested in autologous DC:T cell stimulation assays, validating the activation of functional TRP2-specific cytotoxic T lymphocytes (CTLs) for all patients. We described methods compliant to good manufacturing practices (GMP) to produce LV and SmartDC-TRP2. Feasibility of monocyte transduction in a bag system and cryopreservation following a 24-h standard operating procedure were achieved. After thawing, 50% of the initial monocyte input was recovered and SmartDC-TRP2 self-differentiated in vitro, showing uniform expression of DC markers, detectable LV copies and a polyclonal LV integration pattern not biased to oncogenic loci. GMP-grade SmartDC-TRP2 expanded TRP2-specific autologous CTLs in vitro. These results demonstrated a simpler GMP-compliant method of manufacturing an effective individualized DC vaccine. Such DC vaccine, when in combination with checkpoint inhibition therapies, might provide higher specificity against melanoma.
Collapse
Affiliation(s)
- B S Sundarasetty
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - L Chan
- Department of Hematological Medicine, Cell and Gene Therapy at King's, The Rayne Institute, King's College London, London, UK
| | - D Darling
- Department of Hematological Medicine, Cell and Gene Therapy at King's, The Rayne Institute, King's College London, London, UK
| | - G Giunti
- Department of Hematological Medicine, Cell and Gene Therapy at King's, The Rayne Institute, King's College London, London, UK
| | - F Farzaneh
- Department of Hematological Medicine, Cell and Gene Therapy at King's, The Rayne Institute, King's College London, London, UK
| | - F Schenck
- Department of Dermatology and Allergy, Skin Cancer Center Hannover, Hannover Medical School, Hannover, Germany
| | - S Naundorf
- EUFETS GmbH, Idar-Oberstein, Heidelberg, Germany
| | - K Kuehlcke
- EUFETS GmbH, Idar-Oberstein, Heidelberg, Germany
| | - E Ruggiero
- Division of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - M Schmidt
- Division of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - C von Kalle
- Division of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - M Rothe
- Department of Experimental Hematology, Hannover, Germany
| | - D S B Hoon
- John Wayne Cancer Institute, Santa Monica, CA, USA
| | - L Gerasch
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - C Figueiredo
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - U Koehl
- Institute for Cell Therapeutics and GMP core facility IFB-Tx, Hannover Medical School, Hannover, Germany
| | - R Blasczyk
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - R Gutzmer
- Department of Dermatology and Allergy, Skin Cancer Center Hannover, Hannover Medical School, Hannover, Germany
| | - R Stripecke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
14
|
Stripecke R. Lentivirus-Induced Dendritic Cells (iDC) for Immune-Regenerative Therapies in Cancer and Stem Cell Transplantation. Biomedicines 2014; 2:229-246. [PMID: 28548069 PMCID: PMC5344221 DOI: 10.3390/biomedicines2030229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/29/2014] [Accepted: 08/04/2014] [Indexed: 12/27/2022] Open
Abstract
Conventional dendritic cells (cDC) are ex vivo differentiated professional antigen presenting cells capable of potently stimulating naïve T cells and with vast potential for immunotherapeutic applications. The manufacture of clinical-grade cDC is relatively complex and requires several days for completion. Clinical trials showed poor trafficking of cDC from subcutaneous injection sites to lymph nodes (LN), where DC can optimally stimulate naïve lymphocytes for long-lasting memory responses. We demonstrated in mouse and human systems that a single overnight ex vivo lentiviral (LV) gene transfer into DC precursors for production of combination of cytokines and antigens was capable to induce autonomous self-differentiation of antigen-loaded DC in vitro and in vivo. These highly viable induced DC (iDC) effectively migrated from the injected skin to LN, where they effectively activated de novo antigen-specific effector memory T cells. Two iDC modalities were validated in relevant animal models and are now in clinical development: Self-differentiated Myeloid-derived Antigen-presenting-cells Reactive against Tumors co-expressing GM-CSF/IL-4/TRP2 for melanoma immunotherapy in the autologous setting (SmartDCtrp2), and Self-differentiated Myeloid-derived Lentivirus-induced against human cytomegalovirus as an allogeneic matched adoptive cell after stem cell transplantation (SmyleDCpp65). The lentiviral vector design and packaging methodology has “evolved” continuously in order to simplify and optimize function and biosafety of in vitro and in vivo genetic reprogramming of iDC. Here, we address the challenges seeking for new creations of genetically programmed iDC and integrase-defective LV vaccines for immune regeneration.
Collapse
Affiliation(s)
- Renata Stripecke
- Regenerative Immune Therapies Applied, Excellence Cluster Rebirth, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, OE6862, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| |
Collapse
|
15
|
Salguero G, Daenthanasanmak A, Münz C, Raykova A, Guzmán CA, Riese P, Figueiredo C, Länger F, Schneider A, Macke L, Sundarasetty BS, Witte T, Ganser A, Stripecke R. Dendritic Cell–Mediated Immune Humanization of Mice: Implications for Allogeneic and Xenogeneic Stem Cell Transplantation. THE JOURNAL OF IMMUNOLOGY 2014; 192:4636-47. [DOI: 10.4049/jimmunol.1302887] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Lin L, Wei J, Chen Y, Huang A, Li KKW, Zhang W. Induction of antigen-specific immune responses by dendritic cells transduced with a recombinant lentiviral vector encoding MAGE-A3 gene. J Cancer Res Clin Oncol 2014; 140:281-9. [PMID: 24322180 DOI: 10.1007/s00432-013-1552-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/14/2013] [Indexed: 01/17/2023]
Abstract
PURPOSE Melanoma antigen gene A3 (MAGE-A3) is aberrantly expressed in a number of cancer types. Because of its high specificity, MAGE-A3 has shown to be a promising candidate for cancer immunotherapy. Dendritic cells (DCs) have emerged as the natural agents for antigen delivery. DCs transduced with antigen may increase immune response and maintain immune durability. The aim of this study was to investigate the roles of DCs transduced with lentiviral vectors (LVs) encoding full-length MAGE-A3 gene in cancer immunotherapy . METHODS A LV containing full-length MAGE-A3 gene (rLV/MAGE-A3) was constructed. Reverse transcriptase-polymerase chain reaction and direct DNA sequencing were performed to verify the construct. Human DCs derived from umbilical cord blood were then transduced with rLV/MAGE-A3. The potency of rLV/MAGE-A3-transduced DCs was examined by measurement of surface markers and mixed lymphocyte reaction. The MAGE-A3-specific T-cell response induced by DCs was detected using the lactate dehydrogenase release assay. RESULTS rLV/MAGE-A3 was constructed successfully and used to transduce DCs efficiently. DCs transduced with rLV/MAGE-A3 stably expressed MAGE-A3 and yielded high percentage of cells expressing CD80, CD86, and HLA-DR. rLV/MAGE-A3 transduction did not impair DCs viability and maturation at a multiplicity of infection of 30. The rLV/MAGE-A3-transduced DCs induced MAGE-A3-specific T lymphocytes that exhibited a significant lysis activity against MAGE-A3-bearing tumor cell lines (HuH-7 and SGC-7901). CONCLUSIONS DC-directed rLV/MAGE-A3 efficiently induced antigen-specific immune responses, indicating the possibility of DC-based MAGE-A3 antigen vaccine as a promising strategy for treatment of MAGE-A3-associated cancer.
Collapse
Affiliation(s)
- Liyan Lin
- Department of Pathology, Fujian Medical University, 88# Jiao Tong Road, Fuzhou, 350004, Fujian, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Sundarasetty BS, Singh VK, Salguero G, Geffers R, Rickmann M, Macke L, Borchers S, Figueiredo C, Schambach A, Gullberg U, Provasi E, Bonini C, Ganser A, Woelfel T, Stripecke R. Lentivirus-induced dendritic cells for immunization against high-risk WT1(+) acute myeloid leukemia. Hum Gene Ther 2013; 24:220-37. [PMID: 23311414 DOI: 10.1089/hum.2012.128] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Wilms' tumor 1 antigen (WT1) is overexpressed in acute myeloid leukemia (AML), a high-risk neoplasm warranting development of novel immunotherapeutic approaches. Unfortunately, clinical immunotherapeutic use of WT1 peptides against AML has been inconclusive. With the rationale of stimulating multiantigenic responses against WT1, we genetically programmed long-lasting dendritic cells capable of producing and processing endogenous WT1 epitopes. A tricistronic lentiviral vector co-expressing a truncated form of WT1 (lacking the DNA-binding domain), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-4 (IL-4) was used to transduce human monocytes ex vivo. Overnight transduction induced self-differentiation of monocytes into immunophenotypically stable "SmartDC/tWT1" (GM-CSF(+), IL-4(+), tWT1(+), IL-6(+), IL-8(+), TNF-α(+), MCP-1(+), HLA-DR(+), CD86(+), CCR2(+), CCR5(+)) that were viable for 3 weeks in vitro. SmartDC/tWT1 were produced with peripheral blood mononuclear cells (PBMC) obtained from an FLT3-ITD(+) AML patient and surplus material from a donor lymphocyte infusion (DLI) and used to expand CD8(+) T cells in vitro. Expanded cytotoxic T lymphocytes (CTLs) showed antigen-specific reactivity against WT1 and against WT1(+) leukemia cells. SmartDC/tWT1 injected s.c. into Nod.Rag1(-/-).IL2rγc(-/-) mice were viable in vivo for more than three weeks. Migration of human T cells (huCTLs) to the immunization site was demonstrated following adoptive transfer of huCTLs into mice immunized with SmartDC/tWT1. Furthermore, SmartDC/tWT1 immunization plus adoptive transfer of T cells reactive against WT1 into mice resulted in growth arrest of a WT1(+) tumor. Gene array analyses of SmartDC/tWT1 demonstrated upregulation of several genes related to innate immunity. Thus, SmartDC/tWT1 can be produced in a single day of ex vivo gene transfer, are highly viable in vivo, and have great potential for use as immunotherapy against malignant transformation overexpressing WT1.
Collapse
Affiliation(s)
- Bala Sai Sundarasetty
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Daenthanasanmak A, Salguero G, Borchers S, Figueiredo C, Jacobs R, Sundarasetty BS, Schneider A, Schambach A, Eiz-Vesper B, Blasczyk R, Weissinger EM, Ganser A, Stripecke R. Integrase-defective lentiviral vectors encoding cytokines induce differentiation of human dendritic cells and stimulate multivalent immune responses in vitro and in vivo. Vaccine 2012; 30:5118-31. [PMID: 22691433 DOI: 10.1016/j.vaccine.2012.05.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 05/07/2012] [Accepted: 05/24/2012] [Indexed: 12/24/2022]
Abstract
Integrase-defective lentiviral vectors (ID-LVs) show several hallmarks of conventional lentiviral vectors such as absence of cytotoxic effects and long-term expression in non-replicating target cells. The integration rate of ID-LVs into the genome of target cells is dramatically reduced, which enhances safety and opens perspectives for their use in vaccine development. ID-LVs have been shown to be effective vaccines in mouse models, but functional studies with human cells in vitro and in vivo are lacking. Here, we evaluated whether ID-LVs expressing combinations of cytokines (GM-CSF/IL-4 or GM-CSF/IFN-α) used to transduce human monocytes would result in functional "induced dendritic cells" (iDCs). Overnight transduction of monocytes with high titer ID-LVs generated highly viable (14 days) and immunophenotypically stable iDCs expressing GM-CSF/IL-4 ("SmartDCs") or GM-CSF/IFN-α ("SmyleDCs"). SmartDCs and SmyleDCs maintained in vitro continuously secreted the transgenic cytokines and showed up-regulation of several endogenously produced inflammatory cytokines (IFN-γ, IL-2, -5, -6, and -8). Both iDC types potently stimulated T cells in mixed lymphocyte reactions at levels comparable to conventional DCs (maintained with exogenous cytokines). A single in vitro stimulation of CD8(+) T cells with autologous SmartDCs or SmyleDCs pulsed with peptide pools of pp65 (a human cytomegalovirus antigen) resulted in high expansion of central memory and effector memory CTLs reactive against different pp65 epitopes. We further evaluated the effects of SmartDCs and SmyleDCs to expand anti-pp65 CTLs in vivo using immune deficient NOD/Rag1((-/-))/IL-2rγ((-/-)) (NRG) mice. NRG mice immunized subcutaneously with SmartDCs or SmyleDCs co-expressing the full-length pp65 were subsequently infused with autologous CD8(+) T cells. Both types of iDCs effectively stimulated human CTLs reactive against different pp65 antigenic determinants in vivo. Due to the simplicity of generation, robust viability and combined capacity to stimulate homeostatic, antigenic and multivalent responses, iDCs are promising vaccines to be explored in immunization of lymphopenic patients in the post-transplantation setting.
Collapse
Affiliation(s)
- Anusara Daenthanasanmak
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|