1
|
Multiplex Immunoassay Techniques for On-Site Detection of Security Sensitive Toxins. Toxins (Basel) 2020; 12:toxins12110727. [PMID: 33233770 PMCID: PMC7699850 DOI: 10.3390/toxins12110727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Biological toxins are a heterogeneous group of high molecular as well as low molecular weight toxins produced by living organisms. Due to their physical and logistical properties, biological toxins are very attractive to terrorists for use in acts of bioterrorism. Therefore, among the group of biological toxins, several are categorized as security relevant, e.g., botulinum neurotoxins, staphylococcal enterotoxins, abrin, ricin or saxitoxin. Additionally, several security sensitive toxins also play a major role in natural food poisoning outbreaks. For a prompt response to a potential bioterrorist attack using biological toxins, first responders need reliable, easy-to-use and highly sensitive methodologies for on-site detection of the causative agent. Therefore, the aim of this review is to present on-site immunoassay platforms for multiplex detection of biological toxins. Furthermore, we introduce several commercially available detection technologies specialized for mobile or on-site identification of security sensitive toxins.
Collapse
|
2
|
McEvoy B, Lynch M, Rowan NJ. Opportunities for the application of real-time bacterial cell analysis using flow cytometry for the advancement of sterilization microbiology. J Appl Microbiol 2020; 130:1794-1812. [PMID: 33155740 DOI: 10.1111/jam.14876] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 01/11/2023]
Abstract
Medical devices provide critical care and diagnostic applications through patient contact. Sterility assurance level (SAL) may be defined as the probability of a single viable micro-organism occurring on an item after a sterilization process. Sterilization microbiology often relies upon using an overkill validation method where a 12-log reduction in recalcitrant bacterial endospore population occurs during the process that exploits conventional laboratory-based culture media for enumeration. This timely review explores key assumptions underpinning use of conventional culture-based methods in sterilization microbiology. Consideration is given to how such methods may limit the ability to fully appreciate the inactivation kinetics of a sterilization process such as vaporized hydrogen peroxide (VH2O2) sterilization, and consequently design efficient sterilization processes. Specific use of the real-time flow cytometry (FCM) is described by way of elucidating the practical relevance of these limitation factors with implications and opportunities for the sterilization industry discussed. Application of FCM to address these culture-based limitation factors will inform real-time kinetic inactivation modelling and unlock potential to embrace emerging opportunities for pharma, medical device and sterilization industries including potentially disruptive applications that may involve reduced usage of sterilant.
Collapse
Affiliation(s)
- B McEvoy
- STERIS Applied Sterilization Technologies, IDA Business and Technology Park, Tullamore, Ireland
| | - M Lynch
- Centre for Disinfection, Sterilization and Biosecurity, Athlone Institute of Technology, Athlone, Ireland
| | - N J Rowan
- Centre for Disinfection, Sterilization and Biosecurity, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|
3
|
Ziegler I, Vollmar P, Knüpfer M, Braun P, Stoecker K. Reevaluating limits of detection of 12 lateral flow immunoassays for the detection of Yersinia pestis, Francisella tularensis, and Bacillus anthracis spores using viable risk group-3 strains. J Appl Microbiol 2020; 130:1173-1180. [PMID: 32970936 DOI: 10.1111/jam.14863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/28/2020] [Accepted: 09/17/2020] [Indexed: 11/27/2022]
Abstract
AIM Rapid detection of biological agents in biodefense is critical for operational, tactical and strategic levels as well as for medical countermeasures. Yersinia pestis, Francisella tularensis, and Bacillus anthracis are high priority agents of biological warfare or bioterrorism and many response forces use lateral flow assays (LFAs) for their detection. Several companies produce these assays, which offer results in short time and are easy to use. Despite their importance, only few publications on the limits of detection (LOD) for LFAs are available. Most of these studies used inactivated bacteria or risk group-2 strains. As the inactivation process in previous studies might have affected the tests' performances, it was our aim in this study to determine and compare the LOD of several commercially available LFAs using viable risk group-3 strains. METHODS AND RESULTS Lateral flow assays from four different companies for the detection of following bacteria were evaluated: Y. pestis, F. tularensis and B. anthracis spores. Two independent quantification methods for each target organism were applied, in order to ensure high quantification accuracy. LODs varied greatly between tests and organisms and ranged between 104 for Y. pestis-tests and as high as >109 for one B. anthracis-test. CONCLUSION This work precisely determined the LODs of LFAs from four commercial suppliers. The herein determined LODs differed from results of previous studies. This illustrates the need for using accurately quantified viable risk group 3-strains for determining such LODs. SIGNIFICANCE AND IMPACT OF THE STUDY Our work bridges an important knowledge gap with regard to LFA LOD. The LODs determined in this study will facilitate better assessment of LFA-results. They illustrate that a negative LFA result is not suited to exclude the presence of the respective agent in the analyzed sample.
Collapse
Affiliation(s)
- I Ziegler
- Bundeswehr Institute for Microbiology, Munich, Germany
| | - P Vollmar
- Bundeswehr Institute for Microbiology, Munich, Germany
| | - M Knüpfer
- Bundeswehr Institute for Microbiology, Munich, Germany
| | - P Braun
- Bundeswehr Institute for Microbiology, Munich, Germany
| | - K Stoecker
- Bundeswehr Institute for Microbiology, Munich, Germany
| |
Collapse
|
4
|
Zasada AA. Detection and Identification of Bacillus anthracis: From Conventional to Molecular Microbiology Methods. Microorganisms 2020; 8:E125. [PMID: 31963339 PMCID: PMC7023132 DOI: 10.3390/microorganisms8010125] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Rapid and reliable identification of Bacillus anthracis is of great importance, especially in the event of suspected deliberate release of anthrax spores. However, the identification of B. anthracis is challenging due to its high similarity to closely related species. Since Amerithrax in 2001, a lot of effort has been made to develop rapid methods for detection and identification of this microorganism with special focus on easy-to-perform rapid tests for first-line responders. This article presents an overview of the evolution of B. anthracis identification methods from the time of the first description of the microorganism until the present day.
Collapse
Affiliation(s)
- Aleksandra A Zasada
- Department of Sera and Vaccines Evaluation, National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| |
Collapse
|
5
|
Tam CC, Flannery AR, Cheng LW. A Rapid, Sensitive, and Portable Biosensor Assay for the Detection of Botulinum Neurotoxin Serotype A in Complex Food Matrices. Toxins (Basel) 2018; 10:toxins10110476. [PMID: 30445734 PMCID: PMC6266793 DOI: 10.3390/toxins10110476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022] Open
Abstract
Botulinum neurotoxin (BoNT) intoxication can lead to the disease botulism, characterized by flaccid muscle paralysis that can cause respiratory failure and death. Due to the significant morbidity and mortality costs associated with BoNTs high toxicity, developing highly sensitive, rapid, and field-deployable assays are critically important to protect the nation’s food supply against either accidental or intentional contamination. We report here that the B-cell based biosensor assay CANARY® (Cellular Analysis and Notification of Antigen Risks and Yields) Zephyr detects BoNT/A holotoxin at limits of detection (LOD) of 10.0 ± 2.5 ng/mL in assay buffer. Milk matrices (whole milk, 2% milk and non-fat milk) with BoNT/A holotoxin were detected at similar levels (7.4–7.9 ng/mL). BoNT/A complex was positive in carrot, orange, and apple juices at LODs of 32.5–75.0 ng/mL. The detection of BoNT/A complex in solid complex foods (ground beef, smoked salmon, green bean baby puree) ranged from 14.8 ng/mL to 62.5 ng/mL. Detection of BoNT/A complex in the viscous liquid egg matrix required dilution in assay buffer and gave a LOD of 171.9 ± 64.7 ng/mL. These results show that the CANARY® Zephyr assay can be a highly useful qualitative tool in environmental and food safety surveillance programs.
Collapse
Affiliation(s)
- Christina C Tam
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Services, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA.
| | | | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Services, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA.
| |
Collapse
|
6
|
Kambouris ME, Gaitanis G, Manoussopoulos Y, Arabatzis M, Kantzanou M, Kostis GD, Velegraki A, Patrinos GP. Humanome Versus Microbiome: Games of Dominance and Pan-Biosurveillance in the Omics Universe. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:528-538. [PMID: 30036141 DOI: 10.1089/omi.2018.0096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Global governance of pathogens such as Ebola virus and infectious diseases is central to global health, and to innovation in systems medicine. Worrisomely, the gaps in human immunity and healthcare services combined with novel pathogens emerging by travel, biotechnological advances, or the rupture of the host-species barrier challenge infectious diseases' global governance. Such biorisks and biothreats may scale up to global catastrophic biological risks (GCBRs) spatiotemporally, either as individual or as collective risks. The scale and intensity of such threats challenge current thinking on surveillance, and calls for a move toward pan-biosurveillance. New multilayered, cross-sectoral, and adaptable strategies of prevention and intervention on GCBRs should be developed, considering human hosts in entirety, and in close relationship with other hosts (plants and animals). This also calls for the "Humanome," which we introduce in this study as the totality of human subjects plus any directly dependent biological or nonbiological entities (products, constructs, and interventions). Surveillance networks should be implemented by integrating communications, diagnostics, and robotics/aeronautics technologies. Suppression of pathogens must be enforced both before and during an epidemic outbreak, the former allowing more drastic measures before the pathogens harbor the host. We propose in this expert review that microbiome-level intervention might particularly prove as an effective solution in medical and environmental scales against traditional, currently emerging, and future infectious threats. We conclude with a discussion on the ways in which the humanome and microbiome contest and cooperate, and how this knowledge might usefully inform in addressing the GCBRs, bioterrorism, and associated threats in the pursuit of pan-biosurveillance.
Collapse
Affiliation(s)
| | - Georgios Gaitanis
- 2 Department of Skin and Venereal Diseases, Faculty of Medicine, School of Health Sciences, University of Ioannina , Ioannina, Greece
| | - Yiannis Manoussopoulos
- 3 Plant Protection Division of Patras, Institute of Industrial and Forage Plants N.E.O & Amerikis , Patras, Greece
| | - Michael Arabatzis
- 4 First Department of Dermatology, Medical School, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Maria Kantzanou
- 5 Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens , Athens, Greece
| | - George D Kostis
- 6 Department of Sociology, Panteion University , Athens, Greece
| | - Aristea Velegraki
- 7 Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens , Athens, Greece
| | | |
Collapse
|
7
|
Unbiased Strain-Typing of Arbovirus Directly from Mosquitoes Using Nanopore Sequencing: A Field-forward Biosurveillance Protocol. Sci Rep 2018; 8:5417. [PMID: 29615665 PMCID: PMC5883038 DOI: 10.1038/s41598-018-23641-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/16/2018] [Indexed: 12/17/2022] Open
Abstract
The future of infectious disease surveillance and outbreak response is trending towards smaller hand-held solutions for point-of-need pathogen detection. Here, samples of Culex cedecei mosquitoes collected in Southern Florida, USA were tested for Venezuelan Equine Encephalitis Virus (VEEV), a previously-weaponized arthropod-borne RNA-virus capable of causing acute and fatal encephalitis in animal and human hosts. A single 20-mosquito pool tested positive for VEEV by quantitative reverse transcription polymerase chain reaction (RT-qPCR) on the Biomeme two3. The virus-positive sample was subjected to unbiased metatranscriptome sequencing on the Oxford Nanopore MinION and shown to contain Everglades Virus (EVEV), an alphavirus in the VEEV serocomplex. Our results demonstrate, for the first time, the use of unbiased sequence-based detection and subtyping of a high-consequence biothreat pathogen directly from an environmental sample using field-forward protocols. The development and validation of methods designed for field-based diagnostic metagenomics and pathogen discovery, such as those suitable for use in mobile “pocket laboratories”, will address a growing demand for public health teams to carry out their mission where it is most urgent: at the point-of-need.
Collapse
|
8
|
Mobile Stand-off and Stand-in Surveillance Against Biowarfare and Bioterrorism Agents. SURVEILLANCE IN ACTION 2018. [DOI: 10.1007/978-3-319-68533-5_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Kambouris ME, Manoussopoulos Y, Kantzanou M, Velegraki A, Gaitanis G, Arabatzis M, Patrinos GP. Rebooting Bioresilience: A Multi-OMICS Approach to Tackle Global Catastrophic Biological Risks and Next-Generation Biothreats. ACTA ACUST UNITED AC 2018; 22:35-51. [DOI: 10.1089/omi.2017.0185] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Manousos E. Kambouris
- Department of Pharmacy, University of Patras, Rio Patras, Greece
- Department of Food Technology, ATEI of Thessaly, Karditsa, Greece
| | - Yiannis Manoussopoulos
- Plant Protection Division of Patras, Institute of Industrial and Forage Plants, Patras, Greece
| | - Maria Kantzanou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aristea Velegraki
- Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Gaitanis
- Department of Skin and Venereal Diseases, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Michalis Arabatzis
- First Department of Dermatology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
10
|
Ozanich RM, Colburn HA, Victry KD, Bartholomew RA, Arce JS, Heredia-Langner A, Jarman K, Kreuzer HW, Bruckner-Lea CJ. Evaluation of PCR Systems for Field Screening of Bacillus anthracis. Health Secur 2017; 15:70-80. [PMID: 28192050 PMCID: PMC5314994 DOI: 10.1089/hs.2016.0043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
There is little published data on the performance of hand-portable polymerase chain reaction (PCR) systems that can be used by first responders to determine if a suspicious powder contains a potential biothreat agent. We evaluated 5 commercially available hand-portable PCR instruments for detection of Bacillus anthracis. We used a cost-effective, statistically based test plan to evaluate systems at performance levels ranging from 0.85-0.95 lower confidence bound (LCB) of the probability of detection (POD) at confidence levels of 80% to 95%. We assessed specificity using purified genomic DNA from 13 B. anthracis strains and 18 Bacillus near neighbors, potential interference with 22 suspicious powders that are commonly encountered in the field by first responders during suspected biothreat incidents, and the potential for PCR inhibition when B. anthracis spores were spiked into these powders. Our results indicate that 3 of the 5 systems achieved 0.95 LCB of the probability of detection with 95% confidence levels at test concentrations of 2,000 genome equivalents/mL (GE/mL), which is comparable to 2,000 spores/mL. This is more than sufficient sensitivity for screening visible suspicious powders. These systems exhibited no false-positive results or PCR inhibition with common suspicious powders and reliably detected B. anthracis spores spiked into these powders, though some issues with assay controls were observed. Our testing approach enables efficient performance testing using a statistically rigorous and cost-effective test plan to generate performance data that allow users to make informed decisions regarding the purchase and use of field biodetection equipment. The authors evaluated 5 commercially available hand-portable PCR instruments for detecting Bacillus anthracis. These systems exhibited no false-positive results or PCR inhibition with common suspicious powders and reliably detected B. anthracis spores spiked into these powders, though some issues with assay controls were observed.
Collapse
|
11
|
Ozanich RM, Bartholomew RA, Bruckner-Lea CJ. Response to Letter on Immunoassays for Field Screening of Bacillus anthracis and Ricin. Health Secur 2017; 15:222. [PMID: 28426247 DOI: 10.1089/hs.2017.0011.resp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
12
|
Joob B, Wiwanitkit V. Immunoassays for Field Screening of Bacillus anthracis and Ricin. Health Secur 2017; 15:221-222. [PMID: 28418740 DOI: 10.1089/hs.2017.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|