1
|
Zhao Y, Chen E, Li L, Gong B, Xie W, Nanji S, Dubé ID, Hough MR. Gene expression profiling in the inductive human hematopoietic microenvironment. Biochem Biophys Res Commun 2004; 323:703-11. [PMID: 15369807 DOI: 10.1016/j.bbrc.2004.08.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Indexed: 10/26/2022]
Abstract
Human hematopoietic stem cells (HSCs) and their progenitors can be maintained in vitro in long-term bone marrow cultures (LTBMCs) in which constituent HSCs can persist within the adherent layers for up to 2 months. Media replenishment of LTBMCs has been shown to induce transition of HSCs from a quiescent state to an active cycling state. We hypothesize that the media replenishment of the LTBMCs leads to the activation of important regulatory genes uniquely involved in HSC proliferation and differentiation. To profile the gene expression changes associated with HSC activation, we performed suppression subtractive hybridization (SSH) on day 14 human LTBMCs following 1-h media replenishment and on unmanipulated controls. The generated SSH library contained 191 differentially up-regulated expressed sequence tags (ESTs), the majority corresponding to known genes related to various intracellular processes, including signal transduction pathways, protein synthesis, and cell cycle regulation. Nineteen ESTs represented previously undescribed sequences encoding proteins of unknown function. Differential up-regulation of representative genes, including IL-8, IL-1, putative cytokine 21/HC21, MAD3, and a novel EST was confirmed by semi-quantitative RT-PCR. Levels of fibronectin, G-CSF, and stem cell factor also increased in the conditioned media of LTBMCs as assessed by ELISA, indicating increased synthesis and secretion of these factors. Analysis of our library provides insights into some of the immediate early gene changes underlying the mechanisms by which the stromal elements within the LTBMCs contribute to the induction of HSC activation and provides the opportunity to identify as yet unrecognized factors regulating HSC activation in the LTBMC milieu.
Collapse
Affiliation(s)
- Yongjun Zhao
- Department of Molecular and Cellular Biology, Sunnybrook and Women's College Health Science Centre, Toronto, Ont., Canada
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Trarbach T, Greifenberg S, Bardenheuer W, Elmaagacli A, Hirche H, Flasshove M, Seeber S, Moritz T. Optimized retroviral transduction protocol for human progenitor cells utilizing fibronectin fragments. Cytotherapy 2003; 2:429-38. [PMID: 12044223 DOI: 10.1080/146532400539378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Retroviral transduction in the presence of fibronectin (FN) fragments has proven an efficient and clinically-applicable procedure for gene transfer into hematopoietic cells. So far, FN-based transduction protocols have been optimized primarily for transduction of stem cells, whereas for several therapeutic applications transduction of clonogenic progenitors (CFU) may be sufficient. METHODS Transduction protocols for CFU were optimized by evaluating the effect of growth factors, timing of retroviral transduction, CD34-selection and heparin, using a neomycin-phosphotransferase (neo(R))-expressing retroviral vector. RESULTS The presence of multiple growth factors during prestimulation and transduction, including the differentiating cytokines G-CSF or GM-CSF, substantially enhanced transduction of CFU. Best results were achieved when 24 h of prestimulation were followed by a 24-48 h transduction period in the presence of the CH-296 FN-fragment and IL-3, IL-11, SCF, erythropoietin (EPO), and GM-CSF. With this proto-col we observed highly efficient transduction of BM-derived CFU (90.7 +/- 8.8 % G 418-resistant colonies), even with retrovirus preparations of moderate infectious titer (5 x 10(4) - 2 x 10(5) CFU/mL). The number of CFU increased on average 2.6-fold (range 1.5-3.8) during the transduction procedure. Selection of CD34(+) cells prior to transduction did not improve transduction efficiency. Heparin, even in concentrations as low as 2.0 microg/mL, significantly inhibited transduction of CFU on FN-fragments. DISCUSSION An optimized protocol for retroviral gene transfer into human clonogenic progenitor cells that allows highly efficient transduction, even with moderate titer retroviral vectors, is presented.
Collapse
Affiliation(s)
- T Trarbach
- Department of Internal Medicine, West German Cancer Center, University of Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Relander T, Fahlman C, Karlsson S, Richter J. Low level of gene transfer to and engraftment of murine bone marrow cells from long-term bone marrow cultures. Exp Hematol 2000; 28:373-81. [PMID: 10781895 DOI: 10.1016/s0301-472x(00)00131-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We wanted to determine whether the long-term bone marrow culture (LTBMC) transduction system would lead to efficient gene transfer and engraftment of murine repopulating hematopoietic stem cells (HSC), particularly in nonablated recipients. MATERIALS AND METHODS Congenic mouse strains expressing Ly 5.1 or Ly 5.2 and the GP+E86 cell line producing the MGirL22Y vector carrying the gene for enhanced GFP were used. Murine LTBMCs were established and demi-depopulated on days 7 and 14 with addition of vector supernatant on days 8 and 15. RESULTS Cell recovery on day 21 was 21.3%+/-3.8% of input cells and CFU-C recovery was 9.7+/-3.4% as compared with CFU-C of input cells. In vitro transduction efficiency determined by CFU-C expressing GFP was 22.2%+/-1.6%. In irradiated (950 cGy) mice transplanted with 2x10(6) LTBMC cells, 94% of nucleated cells in the blood at week 16 were of donor origin. However, GFP was only detected at low level in a few animals at week 4 and not later. Analysis of bone marrow from these mice at week 20 did not show any GFP expression and semiquantitative PCR revealed a transgene level of <1%. When 3.5-20.8x10(6) LTBMC cells (corresponding to 20-100x10(6) fresh cells) were transplanted to nonablated recipients, no engraftment or GFP expression were detected. Competitive repopulation experiments showed that the long-term repopulation ability (LTRA) of the LTMC cells was only 7% of fresh cells. CONCLUSION These results indicate that LTBMC transduction of murine cells leads to low-level transduction of progenitors, no gene transfer to repopulating stem cells, and reduction in LTRA in ablated and nonablated recipients.
Collapse
Affiliation(s)
- T Relander
- Department of Molecular Medicine and Gene Therapy, Wallenberg Neuroscience Center, University of Lund, Lund, Sweden.
| | | | | | | |
Collapse
|
4
|
Efficient and Durable Gene Marking of Hematopoietic Progenitor Cells in Nonhuman Primates After Nonablative Conditioning. Blood 1999. [DOI: 10.1182/blood.v94.7.2271.419k41_2271_2286] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Optimization of mobilization, harvest, and transduction of hematopoietic stem cells is critical to successful stem cell gene therapy. We evaluated the utility of a novel protocol involving Flt3-ligand (Flt3-L) and granulocyte colony-stimulating factor (G-CSF) mobilization of peripheral blood stem cells and retrovirus transduction using hematopoietic growth factors to introduce a reporter gene, murine CD24 (mCD24), into hematopoietic stem cells in nonhuman primates. Rhesus macaques were treated with Flt3-L (200 μg/kg) and G-CSF (20 μg/kg) for 7 days and autologous CD34+ peripheral blood stem cells harvested by leukapheresis. CD34+ cells were transduced with an MFGS-based retrovirus vector encoding mCD24 using 4 daily transductions with centrifugations in the presence of Flt3-L (100 ng/mL), human stem cell factor (50 ng/mL), and PIXY321 (50 ng/mL) in serum-free medium. An important and novel feature of this study is that enhanced in vivo engraftment of transduced stem cells was achieved by conditioning the animals with a low-morbidity regimen of sublethal irradiation (320 to 400 cGy) on the day of transplantation. Engraftment was monitored sequentially in the bone marrow and blood using both multiparameter flow cytometry and semi-quantitative DNA polymerase chain reaction (PCR). Our data show successful and persistent engraftment of transduced primitive progenitors capable of giving rise to marked cells of multiple hematopoietic lineages, including granulocytes, monocytes, and B and T lymphocytes. At 4 to 6 weeks posttransplantation, 47% ± 32% (n = 4) of granulocytes expressed mCD24 antigen at the cell surface. Peak in vivo levels of genetically modified peripheral blood lymphocytes approached 35% ± 22% (n = 4) as assessed both by flow cytometry and PCR 6 to 10 weeks posttransplantation. In addition, naı̈ve (CD45RA+and CD62L+) CD4+ and CD8+cells were the predominant phenotype of the marked CD3+ T cells detected at early time points. A high level of marking persisted at between 10% and 15% of peripheral blood leukocytes for 4 months and at lower levels past 6 months in some animals. A cytotoxic T-lymphocyte response against mCD24 was detected in only 1 animal. This degree of persistent long-lived, high-level gene marking of multiple hematopoietic lineages, including naı̈ve T cells, using a nonablative marrow conditioning regimen represents an important step toward the ultimate goal of high-level permanent transduced gene expression in stem cells.
Collapse
|
5
|
Stewart AK, Sutherland DR, Nanji S, Zhao Y, Lutzko C, Nayar R, Peck B, Ruedy C, McGarrity G, Tisdale J, Dubé ID. Engraftment of gene-marked hematopoietic progenitors in myeloma patients after transplant of autologous long-term marrow cultures. Hum Gene Ther 1999; 10:1953-64. [PMID: 10466629 DOI: 10.1089/10430349950017310] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We conducted a phase I hematopoietic stem cell (HSC) gene-marking trial in patients undergoing autologous blood or marrow stem cell transplant for the treatment of multiple myeloma. Between 500 and 1000 ml of bone marrow was harvested from each of 14 myeloma patients and 1 syngeneic donor. A mean of 3.3x10(9) cells per patient were plated in 20 to 50 long-term marrow culture (LTMC) flasks and maintained for 3 weeks. LTMCs were exposed on days 8 and 15 to clinical-grade neo(r)-containing retrovirus supernatant (G1Na). A mean of 8.23x10(8) day-21 LTMC cells containing 5.2x10(4) gene-marked granulocyte-macrophage progenitor cells (CFU-GM) were infused along with an unmanipulated peripheral blood stem cell graft into each patient after myeloablative therapy. Proviral DNA was detected in 71% of 68 tested blood and bone marrow samples and 150 of 2936 (5.1%) CFU-GM derived from patient bone marrow samples after transplant. The proportion of proviral DNA-positive CFU-GM declined from a mean of 9.8% at 3 months to a mean of 2.3% at 24 months postinfusion. Southern blots of 26 marrow and blood samples were negative. Semiquantitative PCR analysis indicated that gene transfer was achieved in 0.01-1% of total bone marrow and blood mononuclear cells (MNCs). Proviral DNA was also observed in EBV-transformed B lymphocytes, in CD34+ -enriched bone marrow cells, and in CFUs derived from the latter progenitors. Gene-modified cells were detected by PCR in peripheral blood and bone marrow for 24 months after infusion of LTMC cells. Sensitivity and specificity of the PCR assays were independently validated in four laboratories. Our data confirm that HSCs may be successfully transduced in stromal based culture systems. The major obstacle to therapeutic application of this approach remains the overall low level of genetically modified cells among the total hematopoietic cell pool in vivo.
Collapse
Affiliation(s)
- A K Stewart
- Department of Medicine, The Toronto Hospital, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Takenaka T, Hendrickson CS, Tworek DM, Tudor M, Schiffmann R, Brady RO, Medin JA. Enzymatic and functional correction along with long-term enzyme secretion from transduced bone marrow hematopoietic stem/progenitor and stromal cells derived from patients with Fabry disease. Exp Hematol 1999; 27:1149-59. [PMID: 10390190 DOI: 10.1016/s0301-472x(99)00050-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fabry disease is a lysosomal storage disorder that is due to a deficiency in alpha-galactosidase A (alpha-gal A). Previously we have shown that a recombinant retrovirus synthesized for the transfer of the human alpha-gal A coding sequence was able to engineer enzymatic correction of the hydrolase deficiency in fibroblasts and lymphoblasts from Fabry patients. The corrected cells secreted alpha-gal A that was taken up and utilized by uncorrected bystander cells, thus demonstrating metabolic cooperativity. In separate experiments we used transduced murine bone marrow cells and successfully tested and quantitated this phenomenon in vivo. In the present studies, which were designed to bring this therapeutic approach closer to clinical utility, we establish that cells originating from the bone marrow of numerous Fabry patients and normal volunteers can be effectively transduced and that these target cells demonstrate metabolic cooperativity. Both isolated CD34+-enriched cells and long-term bone marrow culture cells, including nonadherent hematopoietic cells and adherent stromal cells, were transduced. The transferred gene generates increased intracellular alpha-gal A enzyme activity in these cells. Further, it causes functional correction of lipid accumulation and provides for long-term alpha-gal A secretion. Collectively, these results indicate that a multifaceted gene transfer approach to bone marrow cells may be of therapeutic benefit for patients with Fabry disease.
Collapse
Affiliation(s)
- T Takenaka
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Lutzko C, Omori F, Abrams-Ogg AC, Shull R, Li L, Lau K, Ruedy C, Nanji S, Gartley C, Dobson H, Foster R, Kruth S, Dubé ID. Gene therapy for canine alpha-L-iduronidase deficiency: in utero adoptive transfer of genetically corrected hematopoietic progenitors results in engraftment but not amelioration of disease. Hum Gene Ther 1999; 10:1521-32. [PMID: 10395377 DOI: 10.1089/10430349950017851] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Canine alpha-L-iduronidase (iduronidase) deficiency is a model of the human lysosomal storage disorder mucopolysaccharidosis type I (MPS I). We used this canine model to evaluate the therapeutic potential of hematopoietic stem cell (HSC) gene therapy for enzyme deficiencies. In previous studies, iduronidase-deficient dogs infused with autologous marrow cells genetically modified to express iduronidase had long-term engraftment with provirally marked cells, but there was no evidence of proviral iduronidase expression or clinical improvement. The presence of humoral and cellular immune responses against iduronidase apparently abrogated the therapeutic potential of HSC gene therapy in these experiments. To evaluate HSC gene therapy for canine MPS I in the absence of a confounding immune response, we have now performed in utero adoptive transfer of iduronidase-transduced MPS I marrow cells into preimmune fetal pups. In three separate experiments, 17 midgestation fetal pups were injected with 0.5-1.5 x 10(7) normal or MPS I allogeneic long-term marrow culture (LTMC) cells transduced with neo(r)- or iduronidase-containing retroviral vectors. Nine normal and three MPS I pups survived the neonatal period and demonstrated engraftment of provirally marked progenitors at levels of up to 12% for up to 12 months. However, the proportion of provirally marked circulating leukocytes was approximately 1%. Neither iduronidase enzyme nor proviral-specific transcripts were detected in blood or marrow leukocytes of any MPS I dog. Humoral immune responses to iduronidase were not detected in neonates, even after "boosting" with autologous iduronidase-transduced LTMC cells. All MPS I dogs died at 8-11 months of age from complications of MPS I disease with no evidence of amelioration of MPS I disease. Our results suggest that iduronidase-transduced primitive hematopoietic progenitors can engraft in fetal recipients, contribute to hematopoiesis, and induce immunologic nonresponsiveness to iduronidase in MPS I dogs. However, the therapeutic potential of HSC gene transfer in this model of iduronidase deficiency appears to be limited by poor maintenance of proviral iduronidase gene expression and relatively low levels of genetically corrected circulating leukocytes.
Collapse
Affiliation(s)
- C Lutzko
- Department of Laboratory Medicine, Sunnybrook Health Science Centre, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Omori F, Lutzko C, Abrams-Ogg A, Lau K, Gartley C, Dobson H, Nanji S, Ruedy C, Singaraja R, Li L, Stewart AK, Kruth S, Dubé ID. Adoptive transfer of genetically modified human hematopoietic stem cells into preimmune canine fetuses. Exp Hematol 1999; 27:242-9. [PMID: 10029163 DOI: 10.1016/s0301-472x(98)00043-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To develop a surrogate model system for assaying gene transfer into human hematopoietic stem cells (HSCs) with in vivo repopulating potential, we injected human marrow cells transduced with a reporter retroviral vector in long-term marrow cultures (LTMCs), into the yolk sacs of preimmune canine fetuses. Of eight mid-gestation fetuses injected through the exteriorized uterine wall and under ultrasound guidance, seven were born alive. One puppy died in the neonatal period accidentally. The remaining six puppies are all healthy at 31 months of age. There was no evidence for graft-versus-host disease or any untoward effects of in utero adoptive transfer of transduced human LTMC cells. All puppies were chimeras. Human cells, detected by fluorescence in situ hybridization, were present in blood, declining from 38% to 0.05% between 10 and 44 weeks after birth. Corresponding numbers for marrow were from 20% to 0.05%. Human cells were also detected in assays of hematopoietic cell progenitors and in stimulated blood cultures. All six puppies were positive for the presence of proviral DNA at various time-points after birth. In three dogs, provirus was detected up to 41 weeks after birth in blood or marrow, and in one dog up to 49 weeks in blood. These data support the further development of this large-animal model system for studies of human hematopoiesis.
Collapse
Affiliation(s)
- F Omori
- Department of Laboratory Medicine, Sunnybrook Health Science Centre, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gene Marking and the Biology of Hematopoietic Cell Transfer in Human Clinical Trials. BLOOD CELL BIOCHEMISTRY 1999. [DOI: 10.1007/978-1-4615-4889-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Amado RG, Symonds G, Jamieson BD, Zhao G, Rosenblatt JD, Zack JA. Effects of megakaryocyte growth and development factor on survival and retroviral transduction of T lymphoid progenitor cells. Hum Gene Ther 1998; 9:173-83. [PMID: 9472777 DOI: 10.1089/hum.1998.9.2-173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Murine retroviral vectors have the potential to mediate stable gene transfer into hematopoietic progenitor cells. A known drawback to the use of these vectors is that transduction can only take place in cells actively progressing through the cell cycle. Thrombopoietin, the c-mpl ligand, is known to support division of hematopoietic precursors of primitive origin. Polyethylene glycol (PEG)-conjugated recombinant human megakaryocyte growth and development factor (MGDF) is a polypeptide related to thrombopoietin that stimulates megakaryocyte production. To investigate whether MGDF would also induce stem cell division and support retroviral transduction of CD34+ cells, we compared the effects of MGDF, stem cell factor (SCF), interleukin-3 (IL-3), and IL-6, alone or in combination, using amphotropic and vesicular stomatitis virus (VSV-G) pseudotyped murine retroviral vectors. Similar transduction efficiency was observed when CD34+ cells were transduced in the presence of SCF and MGDF as compared to SCF, IL-3, and IL-6. Using the SCID-hu mouse model of thymopoiesis, we investigated whether CD34+ cells transduced in the presence of these cytokines could reconstitute irradiated thymic implants, and whether vector sequences were present in mature thymocytes. At early timepoints, no significant differences were observed on engraftment of donor progenitors incubated with each cytokine combination. However, a significant difference in the percentage of donor derived CD4+/CD8+ immature thymocytes was observed 9 weeks after implantation of CD34+ cells exposed to the combination of SCF and MGDF as compared to SCF, IL-3, and IL-6 (p = 0.04), indicating that MGDF/SCF better supported the survival of thymocyte precursor cells. Approximately 4% of thymocytes in both cytokine groups harbored vector sequences. These studies provide evidence that MGDF and SCF in combination can mediate transduction of hematopoietic progenitors capable of contributing to long-term thymopoiesis. These results may have important applications for the implementation of gene therapy strategies in disorders affecting the T lymphoid system.
Collapse
Affiliation(s)
- R G Amado
- Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90095-1678, USA
| | | | | | | | | | | |
Collapse
|
11
|
|