1
|
Chen W, Tan L, Zhou Q, Li W, Li T, Zhang C, Wu J. AAVS1 site-specific integration of the CAR gene into human primary T cells using a linear closed-ended AAV-based DNA vector. J Gene Med 2020; 22:e3157. [PMID: 31901177 DOI: 10.1002/jgm.3157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Use of chimeric antigen receptor (CAR) T cells has become a promising strategy in cancer immunotherapy. However, safety in clinical application is also one of the most controversial issues. METHODS In the present study, we investigated the application of a non-viral site-directed vector (CELiD [closed-ended linear duplex DNA]) dependent on adeno-associated virus (AAV) genomes for the purpose of safe CAR-T engineering. We co-electroporated CD19-CAR encoding "CELiD" vectors with plasmid pCMV-Rep into human T cells and ensured stably transfected CAR-T cells by G418 selection. The efficiency of AAVS1 site-specific integration was analyzed by a real-time polymerase chain reaction. RESULTS CAR-T cells engineered by CELiD vectors could be established within 20 days with up to 22.8% AAVS1 site-specific integration efficiency. CAR expression and cytokine secretion of CAR modified T cells were evaluated in vitro. Abundant effector cytokines were produced by the CAR-T cells engineered by CELiD vectors compared to control T cells and the killing efficiency of target cells was estimated to as high as 75% in vitro. CONCLUSIONS With the help of the AAV-derived CELiD vector, CAR genes were preferentially integrated into the AAVS1 site. This technology could be utilized in human T cell modification and remove the safety constraints of CAR-T therapy.
Collapse
Affiliation(s)
- Wei Chen
- Suzhou Red Cross Blood Center, Suzhou, China
| | - Liang Tan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | | | - WenSheng Li
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Taiming Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chun Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | | |
Collapse
|
2
|
Human Neural Stem Cells with GDNF Site-Specific Integration at AAVS1 by Using AAV Vectors Retained Their Stemness. Neurochem Res 2018; 43:930-937. [PMID: 29435804 DOI: 10.1007/s11064-018-2498-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 01/05/2018] [Accepted: 02/07/2018] [Indexed: 01/30/2023]
Abstract
The neural stem cells (NSCs) have the ability to self-renew, and to migrate to pathologically altered regions of the central nervous system. Glial cell derived neurotrophic factor (GDNF) could protect dopamine neurons and rescue motor neurons in vivo, which has been proposed as a promising candidate for the treatments of degenerative neurological diseases. In order to combine the advantages of neurotrophic factors and stem cells in clinical therapy, we established the modified hNSCs that has site-specific integration of GDNF gene by using recombinant adeno-associated virus (rAAV) vectors. The hNSCs were co-infected by rAAV2-EGFP-GDNF and rAAV2-SVAV2 which provide integrase to specifically integrate GDNF gene into AAVS1 site. The GDNF-hNSCs maintained their original stem cell characteristics and the ability to differentiate into neurons in vitro. In the animal model, the GDNF-hNSCs were specifically transplanted into CA1 area of hippocampi and could migrate to the dentate gyrus region and differentiate into neuronal cells while maintaining GDNF expression. hNSCs with GDNF gene site-specific integration at AAVS1 by using AAV vectors retained their stemness and effectively expressed GDNF, which indicates the potential of employing transplanted hNPCs for treatment of brain injuries and degenerative neurological diseases.
Collapse
|
3
|
Zhang J, Zhang Y, Liu X, Xiang J, Zhang C. Establishment of a HEK293T cell line able to site-specifically integrate and stably express GDNF by rAAV-2 vector. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
4
|
Zhang Y, Liu X, Zhang J, Zhang C. Site-specific integration of CAR gene into Jurkat T cells with a linear close-ended AAV-based DNA vector for CAR-T engineering. Biotechnol Lett 2016; 38:1423-31. [DOI: 10.1007/s10529-016-2139-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/25/2016] [Indexed: 12/18/2022]
|
5
|
Abstract
Here we review the recent literature on Hemophilia gene transfer/therapy. Gene therapy is one of several new technologies being developed as a treatment for bleeding disorders. We will discuss current and pending clinical efforts and attempt to relate how the field is trending. In doing so, we will focus on the use of recombinant Adeno-associated viral (rAAV) vector-mediated gene transfer since all currently active trials are using this vector. Recent exciting results embody nearly 20 years of preclinical and translational research. After several early clinical attempts, therapeutic factor levels that can now be achieved reflect several modifications of the original vectors. Patterns of results are slowly starting to emerge as different AAV vectors are being tested. As with any new technology, there are drawbacks, and the potential for immune/inflammatory and oncogenic risks have emerged and will be discussed.
Collapse
Affiliation(s)
- Peter Ward
- a Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai, One Gustave Levy Place , New York City , NY , USA
| | - Christopher E Walsh
- a Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai, One Gustave Levy Place , New York City , NY , USA
| |
Collapse
|
6
|
Liu X, Ping H, Zhang C. Rapid establishment of a HEK 293 cell line expressing FVIII-BDD using AAV site-specific integration plasmids. BMC Res Notes 2014; 7:626. [PMID: 25204455 PMCID: PMC4166473 DOI: 10.1186/1756-0500-7-626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 09/05/2014] [Indexed: 11/14/2022] Open
Abstract
Background Stable human cell lines have gradually become the preferred system for large scale production of recombinant proteins for clinical applications because of their capacity of proper protein post-translational modification and low immunogenicity. However, human cell line development technologies are commonly based on random genome integration of protein expressing genes. It is required to screen large numbers of cell clones to identify stable high producer cell clones and the cell line development process usually takes 6 to 12 months. Adeno-associated virus type 2 (AAV2) Rep protein is known to induce rAAV DNA integration into a specific site (AAVS1) of the human chromosome 19 and integrated transgenes can stably express proteins. We take advantage of this AAV unique feature to develop a rapid protocol to clone a stable recombinant protein expression human cell line. Findings We have constructed two plasmids. One plasmid, pSVAV2, contains the AAV rep gene for the synthesis of integrase; the second plasmid, pTRP5GFPFVIII-BDD, contains B-domain-deleted factor VIII (FVIII-BDD) and GFP gene flanked by AAV ITRs. Human embryonic kidney (HEK) 293 cells were co-transfected with the two plasmids and the cells were screened by green fluorescence to establish the recombinant FVIII-BDD cell line. PCR analysis showed that the FVIII-BDD gene has been integrated into the AAVS1 site of human chromosome 19. The FVIII-BDD protein secreted into the extracellular media exhibited coagulant activity. Conclusion We developed a method of rapid establishment of human HEK 293 cell line expressing recombinant FVIII-BDD protein with AAV site-specific integration plasmids.
Collapse
Affiliation(s)
| | | | - Chun Zhang
- Suzhou Municipal Key Laboratory of Molecular Diagnostics and Therapeutics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, NO, 88 Keling Road, Suzhou New District, Suzhou 215163, P, R, China.
| |
Collapse
|
7
|
Adeno-associated virus type 2 wild-type and vector-mediated genomic integration profiles of human diploid fibroblasts analyzed by third-generation PacBio DNA sequencing. J Virol 2014; 88:11253-63. [PMID: 25031342 DOI: 10.1128/jvi.01356-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep-deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats. IMPORTANCE Adeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will have impact on vector targeting to be considered during gene therapy.
Collapse
|
8
|
Chen MJ, Lu Y, Hamazaki T, Tsai HY, Erger K, Conlon T, Elshikha AS, Li H, Srivastava A, Yao C, Brantly M, Chiodo V, Hauswirth W, Terada N, Song S. Reprogramming adipose tissue-derived mesenchymal stem cells into pluripotent stem cells by a mutant adeno-associated viral vector. Hum Gene Ther Methods 2013; 25:72-82. [PMID: 24191859 DOI: 10.1089/hgtb.2013.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Induced pluripotent stem (iPS) cells have great potential for personalized regenerative medicine. Although several different methods for generating iPS cells have been reported, improvement of safety and efficiency is imperative. In this study, we tested the feasibility of using a triple tyrosine mutant AAV2 (Y444+500+730F) vector, designated AAV2.3m, to generate iPS cells. We developed a polycistronic rAAV2.3m vector expressing three reprogramming factors, Klf4, Oct4, and Sox2, and then used this vector to infect mouse adipose-derived mesenchymal stem cells (AT-MSCs) to induce the generation of iPS cells. We demonstrated that (1) the triple tyrosine mutant AAV2 vector is able to reprogram mouse adult adipose tissue-derived stem cells into the pluripotent state. Those rAAV2.3m-derived iPS (rAAV2.3m-iPS) cells express endogenous pluripotency-associated genes including Oct4, Sox2, and SSEA-1, and form teratomas containing multiple tissues in vivo; (2) c-myc, an oncogene, is dispensable in rAAV2.3m-mediated cellular reprogramming; and (3) transgene expression is undetectable after reprogramming, whereas vector DNA is detectable, indicating that transgenes are silenced. These results indicated the rAAV vector may have some advantages in generating iPS cells.
Collapse
Affiliation(s)
- Mong-Jen Chen
- 1 Department of Pharmaceutics, University of Florida , Gainesville, FL 32610
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Targeted integration of a rAAV vector into the AAVS1 region. Virology 2012; 433:356-66. [PMID: 22981435 DOI: 10.1016/j.virol.2012.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/25/2012] [Accepted: 08/03/2012] [Indexed: 11/22/2022]
Abstract
Adeno-associated virus (AAV) has been reported to integrate in a site-specific manner into chromosome 19 (a site designated AAVS1), a phenomenon that could be exploited for ex vivo targeted gene therapy. Recent studies employing LM-PCR to determine AAV integration loci; however, have, contrary to previous results with less reliable methods, concluded that the proclivity for AAV integration at AAVS1 is minimal. We tested this conclusion employing LM-PCR protocols designed to avoid bias. Hep G2 cells were infected with rAAV2-GFP and coinfected with wt AAV2 to supply Rep in trans. Sorted cells were cloned and cultured. In 26 clones that retained fluorescence, DNA was extracted and AAV-genomic junctions amplified by two LM-PCR methods. Sequencing was performed without bacterial cloning. Of these 26 clones it was possible to assign a genomic integration site to 14, of which 9 were in the AAVS1 region. In three additional clones, rAAV integration junction were to an integrated wt AAV genome while two were to an rAAV genome. We also show that integration of the AAV-GFP genome can be achieved without cointegration of the AAV genome. Based on the pattern of integrants we propose, for potential use in ex vivo targeted gene therapy, a simplified PCR method to identify clones that have rAAV genomes integrated into AAVS1.
Collapse
|
10
|
Li H, Zhang B, Lu Y, Jorgensen M, Petersen B, Song S. Adipose tissue-derived mesenchymal stem cell-based liver gene delivery. J Hepatol 2011; 54:930-8. [PMID: 21168381 PMCID: PMC3079008 DOI: 10.1016/j.jhep.2010.07.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The adipose tissue represents an accessible, abundant, and replenishable source of adult stem cells for potential applications in regenerative medicine. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) resemble bone marrow-derived mesenchymal stem cells (BM-MSCs) with respect to morphology, immune-phenotype, and multiple differentiation capability. In the present study, we investigated the feasibility of AT-MSC-based liver gene delivery for the treatment of alpha 1-antitrypsin deficiency. METHODS Mouse AT-MSCs were transduced by rAAV vectors and transplanted into the mouse liver. RESULTS We showed that AT-MSCs can be transduced by recombinant adeno-associated viral vector serotype 1 (rAAV1-CB-hAAT). After transplanting to the mouse liver, ex vivo transduced AT-MSCs expressed the transgene product, human alpha 1-antitrypsin (hAAT). Importantly, serum levels of hAAT were sustained and no anti-hAAT antibody was detected in any recipients. CONCLUSIONS These results demonstrated that AT-MSCs can be transduced by rAAV vectors, engrafted into recipient livers, contribute to liver regeneration, and serve as a platform for transgene expression without eliciting an immune response. AT-MSC-based gene therapy presents a novel approach for the treatment of liver diseases, such as AAT deficiency.
Collapse
Affiliation(s)
- Hong Li
- Department of Pharmaceutics, University of Florida, Gainesville, Florida
| | - Bin Zhang
- Department of Pharmaceutics, University of Florida, Gainesville, Florida
| | - Yuanqing Lu
- Department of Pharmaceutics, University of Florida, Gainesville, Florida
| | - Marda Jorgensen
- Brain Institute, University of Florida, Gainesville, Florida
| | - Bryon Petersen
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Sihong Song
- Department of Pharmaceutics, University of Florida, Gainesville, Florida
| |
Collapse
|
11
|
Yue YB, Xue YY, Tian L, Xue JL, Chen JZ, Jia W. Functional differentiation between Rep-mediated site-specific integration and transcriptional repression of the adeno-associated viral p5 promoter. Hum Gene Ther 2010; 21:728-38. [PMID: 20070175 DOI: 10.1089/hum.2009.192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The adeno-associated virus (AAV) p5 promoter controls expression of Rep68 and Rep78, which are responsible for specific integration of the viral genome into the AAVS1 site of the human genome. The p5 promoter contains a Rep-binding element (RBE) sequence that acts as a substrate of the Rep proteins for both site-specific integration of p5 itself and transcriptional suppression of the p5 promoter. To differentiate these two Rep-mediated functions, we dissected the p5 core structure TATA/RBE/YY1+1 through a series of mutations. Mutations in the TATA box or YY1+1 region of p5IEE significantly reduced Rep-mediated site-specific integration (RMSSI) and p5 promoter transcriptional activity, but only the TATA box is involved in Rep-mediated transcriptional suppression (RMTS). Point mutations at nucleotides 266, 267, 268, 270, and 273 of the GAGTGAGC motif in p5 RBE significantly reduced RMSSI efficiency. However, only p5G270T lost the affinity of Rep binding and had significant reduction of RMTS. It appears that RMTS is determined by the affinity of p5RBE for Rep whereas RMSSI requires more stringent conditions. Thus, RMTS and RMSSI can be differentiated by point mutations in the p5 promoter, which is useful in gene therapy in a helper vector to drive Rep expression, as the mutant promoters seldom integrate themselves but remain the RMTS feature for reduced cytotoxicity caused by a high level of Rep protein.
Collapse
Affiliation(s)
- Yang-bo Yue
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
12
|
Integration preferences of wildtype AAV-2 for consensus rep-binding sites at numerous loci in the human genome. PLoS Pathog 2010; 6:e1000985. [PMID: 20628575 PMCID: PMC2900306 DOI: 10.1371/journal.ppat.1000985] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 06/03/2010] [Indexed: 01/21/2023] Open
Abstract
Adeno-associated virus type 2 (AAV) is known to establish latency by preferential integration in human chromosome 19q13.42. The AAV non-structural protein Rep appears to target a site called AAVS1 by simultaneously binding to Rep-binding sites (RBS) present on the AAV genome and within AAVS1. In the absence of Rep, as is the case with AAV vectors, chromosomal integration is rare and random. For a genome-wide survey of wildtype AAV integration a linker-selection-mediated (LSM)-PCR strategy was designed to retrieve AAV-chromosomal junctions. DNA sequence determination revealed wildtype AAV integration sites scattered over the entire human genome. The bioinformatic analysis of these integration sites compared to those of rep-deficient AAV vectors revealed a highly significant overrepresentation of integration events near to consensus RBS. Integration hotspots included AAVS1 with 10% of total events. Novel hotspots near consensus RBS were identified on chromosome 5p13.3 denoted AAVS2 and on chromsome 3p24.3 denoted AAVS3. AAVS2 displayed seven independent junctions clustered within only 14 bp of a consensus RBS which proved to bind Rep in vitro similar to the RBS in AAVS3. Expression of Rep in the presence of rep-deficient AAV vectors shifted targeting preferences from random integration back to the neighbourhood of consensus RBS at hotspots and numerous additional sites in the human genome. In summary, targeted AAV integration is not as specific for AAVS1 as previously assumed. Rather, Rep targets AAV to integrate into open chromatin regions in the reach of various, consensus RBS homologues in the human genome. This is the first unbiased genome-wide analysis of wildtype AAV integration combined with a thorough bioinformatic analysis of preferred genomic motifs and patterns in the neighbourhood of the integration sites identified. The preference of Rep-dependent AAV integration near multiple consensus Rep-binding sites was lost in the case of AAV vector integration in the absence of Rep expression. Our findings challenge the commonly accepted notion of site-specific AAV targeting to AAVS1 on chromosome 19q13.42. Although AAVS1 contains a canonical Rep-binding site, numerous additional sites including the newly identified hotspots AAVS2 on chromosome 5p13.3 and AAVS3 on chromosome 3p24.3 harbour functional Rep-binding sites suitable for AAV integration. AAV vectors are quickly moving forward in the clinic and Rep-dependent vector targeting strategies are being actively pursued. Detailed information of AAV wildtype versus recombinant AAV vector integration sites and preferences are needed to evaluate the safety profile of AAV vectors in gene therapy.
Collapse
|
13
|
Li H, Lu Y, Witek RP, Chang LJ, Campbell-Thompson M, Jorgensen M, Petersen B, Song S. Ex vivo transduction and transplantation of bone marrow cells for liver gene delivery of alpha1-antitrypsin. Mol Ther 2010; 18:1553-8. [PMID: 20551917 DOI: 10.1038/mt.2010.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adult stem cell-based gene therapy holds several unique advantages including avoidance of germline or other undesirable cell transductions. We have previously shown that liver progenitor (oval) cells can be used as a platform for liver gene delivery of human alpha1-antitrypsin (hAAT). However, this cell source cannot be used in humans for autologous transplantation. In the present study, we tested the feasibility of bone marrow (BM) cell-based liver gene delivery of hAAT. In vitro studies showed that BM cells can be transduced by lentiviral vector (Lenti-CB-hAAT) and recombinant adeno-associated viral vectors (rAAV1-CB-hAAT, and rAAV8-CB-hAAT). Transplantation studies showed that transplanted BM cells homed into liver, differentiated into hepatocytes and expressed hAAT in the liver. Importantly, we showed that transplantation of rAAV8-CB-hAAT vector-transduced BM cells resulted in sustained levels of hAAT in the systemic circulation of recipient mice. These results demonstrated that rAAV vector-mediated BM cell-based liver gene therapy is feasible for the treatment of AAT deficiency and implies a novel therapy for the treatment of liver diseases.
Collapse
Affiliation(s)
- Hong Li
- Department of Pharmaceutics, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Adeno-associated virus site-specific integration is mediated by proteins of the nonhomologous end-joining pathway. J Virol 2009; 83:11655-64. [PMID: 19759155 DOI: 10.1128/jvi.01040-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Adeno-associated virus type 2 (AAV 2) is the only eukaryotic virus capable of site-specific integration; the target site is at chromosome 19q13.4, a site termed AAVS1. The biology of AAV latency has been extensively studied in cell culture, yet the precise mechanism and the required cellular factors are not known. In this study, we assessed the relative frequencies of stable site-specific integration by characterization of cell clones containing integrated AAV vectors. By this assay, two proteins involved in nonhomologous end joining (NHEJ), DNAPKcs and ligase IV, exhibit differential effects on AAV site-specific integration. DNAPKcs is not required; its presence increases the frequency of junction formation indicative of site-specific integration, but seems to reduce the ratio of site-specific integration to random integration (i.e., the latter is even more enhanced). In contrast, site-specific integration is significantly reduced relative to random integration in cells deficient in ligase IV expression. Furthermore, we show that single-stranded AAV vectors are better substrates for site-specific integration than are self-complementary AAV vectors; the absence of DNAPKcs did not affect the targeted integration of these double-stranded AAV vectors. Together, these data suggest that NHEJ proteins participate in site-specific integration, and indicate a role for the single-stranded form of AAV DNA in targeted integration.
Collapse
|
15
|
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disorder due to mutations in the CF transmembrane conductance regulator (CFTR) gene that lead to defective ion transport in the conducting pulmonary airways and exocrine glands. Through a process that is not fully understood, CFTR defects predispose affected patients to chronic endobronchial infections with organisms such as Pseudomonas aeruginosa and Staphylococcus aureus. Following the discovery of the CFTR gene in 1989, CF became one of the primary targets for gene therapy research. Early enthusiasm surrounded the new field of gene therapy during most of the 1990s and it led academics and clinicians on a big effort to apply gene therapy for cystic fibrosis. Clinical studies have been pursued using recombinant adenovirus, recombinant adeno-associated virus, cationic liposomes, and cationic polymer vectors. Although to this date no dramatic therapeutic benefits have been observed, a lot of information has been gained from the pre-clinical and clinical studies that were performed. This learning curve has led to the optimization of vector technology and an appreciation of immune and mechanical barriers that have to be overcome for successful delivery.
Collapse
|
16
|
Abstract
SUMMARY The unique life cycle of adeno-associated virus (AAV) and its ability to infect both nondividing and dividing cells with persistent expression have made it an attractive vector. An additional attractive feature of the wild-type virus is the lack of apparent pathogenicity. Gene transfer studies using AAV have shown significant progress at the level of animal models; clinical trials have been noteworthy with respect to the safety of AAV vectors. No proven efficacy has been observed, although in some instances, there have been promising observations. In this review, topics in AAV biology are supplemented with a section on AAV clinical trials with emphasis on the need for a deeper understanding of AAV biology and the development of efficient AAV vectors. In addition, several novel approaches and recent findings that promise to expand AAV's utility are discussed, especially in the context of combining gene therapy ex vivo with new advances in stem or progenitor cell biology.
Collapse
|