1
|
Kesharwani P, Prajapati SK, Jain A, Sharma S, Mody N, Jain A. Biodegradable Nanogels for Dermal Applications: An Insight. CURRENT NANOSCIENCE 2023; 19:509-524. [DOI: 10.2174/1573413718666220415095630] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 12/23/2021] [Indexed: 08/22/2024]
Abstract
Abstract:
Biodegradable nanogels in the biomedical field are emerging vehicles comprising
dispersions of hydrogel nanoparticles having 3D crosslinked polymeric networks. Nanogels show
distinguished characteristics including their homogeneity, adjustable size, low toxicity, stability
in serum, stimuli-responsiveness (pH, temperature, enzymes, light, etc.), and relatively good
drug encapsulation capability. Due to these characteristics, nanogels are referred to as nextgeneration
drug delivery systems and are suggested as promising carriers for dermal applications.
The site-specific delivery of drugs with effective therapeutic effects is crucial in transdermal drug
delivery. The nanogels made from biodegradable polymers can show external stimuliresponsiveness
which results in a change in gel volume, water content, colloidal stability, mechanical
strength, and other physical and chemical properties, thus improving the site-specific
topical drug delivery. This review provides insight into the advances in development, limitations,
and therapeutic significance of nanogels formulations. It also highlights the process of release of
drugs in response to external stimuli, various biodegradable polymers in the formulation of the
nanogels, and dermal applications of nanogels and their role in imaging, anti‐inflammatory therapy,
antifungal and antimicrobial therapy, anti‐psoriatic therapy, and ocular and protein/peptide
drug delivery.
Collapse
Affiliation(s)
- Payal Kesharwani
- Institute of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, 201310, Uttar Pradesh,
India
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, P.O. Rajasthan 304022, India
| | - Shiv Kumar Prajapati
- Institute of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, 201310, Uttar Pradesh,
India
| | - Anushka Jain
- Raj Kumar
Goel Institute of Technology (Pharmacy), 5-Km. Stone, Delhi-Meerut Road, Ghaziabad, Uttar Pradesh, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, P.O. Rajasthan-304022-India
| | - Nishi Mody
- Department of Pharmaceutical Sciences, Dr. H. S. Gour University, Sagar (MP) 470003, India
| | - Ankit Jain
- Department of
Materials Engineering, Indian Institute of Science, Bangalore 560012 (Karnataka), India
| |
Collapse
|
2
|
Pereira PA, Serra MES, Serra AC, Coelho JFJ. Application of vinyl polymer-based materials as nucleic acids carriers in cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1820. [PMID: 35637638 DOI: 10.1002/wnan.1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/13/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Nucleic acid-based therapies have changed the paradigm of cancer treatment, where conventional treatment modalities still have several limitations in terms of efficacy and severe side effects. However, these biomolecules have a short half-life in vivo, requiring multiple administrations, resulting in severe suffering, discomfort, and poor patient compliance. In the early days of (nano)biotechnology, these problems caused concern in the medical community, but recently it has been recognized that these challenges can be overcome by developing innovative formulations. This review focuses on the use of vinyl polymer-based materials for the protection and delivery of nucleic acids in cancer. First, an overview of the properties of nucleic acids and their versatility as drugs is provided. Then, key information on the achievements to date, the most effective delivery methods, and the evaluation of functionalization approaches (stimulatory strategies) are critically discussed to highlight the importance of vinyl polymers in the new cancer treatment approaches. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Patrícia Alexandra Pereira
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, Portugal
| | | | - Arménio C Serra
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
| | - Jorge F J Coelho
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
| |
Collapse
|
3
|
Han M, Beon J, Lee JY, Oh SS. Systematic Combination of Oligonucleotides and Synthetic Polymers for Advanced Therapeutic Applications. Macromol Res 2021; 29:665-680. [PMID: 34754286 PMCID: PMC8568687 DOI: 10.1007/s13233-021-9093-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/22/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022]
Abstract
The potential of oligonucleotides is exceptional in therapeutics because of their high safety, potency, and specificity compared to conventional therapeutic agents. However, many obstacles, such as low in vivo stability and poor cellular uptake, have hampered their clinical success. Use of polymeric carriers can be an effective approach for overcoming the biological barriers and thereby maximizing the therapeutic efficacy of the oligonucleotides due to the availability of highly tunable synthesis and functional modification of various polymers. As loaded in the polymeric carriers, the therapeutic oligonucleotides, such as antisense oligonucleotides, small interfering RNAs, microRNAs, and even messenger RNAs, become nuclease-resistant by bypassing renal filtration and can be efficiently internalized into disease cells. In this review, we introduced a variety of systematic combinations between the therapeutic oligonucleotides and the synthetic polymers, including the uses of highly functionalized polymers responding to a wide range of endogenous and exogenous stimuli for spatiotemporal control of oligonucleotide release. We also presented intriguing characteristics of oligonucleotides suitable for targeted therapy and immunotherapy, which can be fully supported by versatile polymeric carriers.
Collapse
Affiliation(s)
- Moohyun Han
- Department of Materials Science and Engineering, Pohang University of Science Technology (POSTECH), Pohang, Gyeongbuk, 37673 Korea
| | - Jiyun Beon
- Department of Materials Science and Engineering, Pohang University of Science Technology (POSTECH), Pohang, Gyeongbuk, 37673 Korea
| | - Ju Young Lee
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429 Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science Technology (POSTECH), Pohang, Gyeongbuk, 37673 Korea
| |
Collapse
|
4
|
Baker A, Khan MS, Iqbal MZ, Khan MS. Tumor-targeted Drug Delivery by Nanocomposites. Curr Drug Metab 2021; 21:599-613. [PMID: 32433002 DOI: 10.2174/1389200221666200520092333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/30/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tumor-targeted delivery by nanoparticles is a great achievement towards the use of highly effective drug at very low doses. The conventional development of tumor-targeted delivery by nanoparticles is based on enhanced permeability and retention (EPR) effect and endocytosis based on receptor-mediated are very demanding due to the biological and natural complications of tumors as well as the restrictions on the design of the accurate nanoparticle delivery systems. METHODS Different tumor environment stimuli are responsible for triggered multistage drug delivery systems (MSDDS) for tumor therapy and imaging. Physicochemical properties, such as size, hydrophobicity and potential transform by MSDDS because of the physiological blood circulation different, intracellular tumor environment. This system accomplishes tumor penetration, cellular uptake improved, discharge of drugs on accurate time, and endosomal discharge. RESULTS Maximum drug delivery by MSDDS mechanism to target therapeutic cells and also tumor tissues and sub cellular organism. Poorly soluble compounds and bioavailability issues have been faced by pharmaceutical industries, which are resolved by nanoparticle formulation. CONCLUSION In our review, we illustrate different types of triggered moods and stimuli of the tumor environment, which help in smart multistage drug delivery systems by nanoparticles, basically a multi-stimuli sensitive delivery system, and elaborate their function, effects, and diagnosis.
Collapse
Affiliation(s)
- Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Mohd Salman Khan
- Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Muhammad Zafar Iqbal
- Department of Studies and Research in Zoology, Government First Grade College, Karwar, 581301, India
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| |
Collapse
|
5
|
Sabir F, Zeeshan M, Laraib U, Barani M, Rahdar A, Cucchiarini M, Pandey S. DNA Based and Stimuli-Responsive Smart Nanocarrier for Diagnosis and Treatment of Cancer: Applications and Challenges. Cancers (Basel) 2021; 13:3396. [PMID: 34298610 PMCID: PMC8307033 DOI: 10.3390/cancers13143396] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 07/02/2021] [Indexed: 12/26/2022] Open
Abstract
The rapid development of multidrug co-delivery and nano-medicines has made spontaneous progress in tumor treatment and diagnosis. DNA is a unique biological molecule that can be tailored and molded into various nanostructures. The addition of ligands or stimuli-responsive elements enables DNA nanostructures to mediate highly targeted drug delivery to the cancer cells. Smart DNA nanostructures, owing to their various shapes, sizes, geometry, sequences, and characteristics, have various modes of cellular internalization and final disposition. On the other hand, functionalized DNA nanocarriers have specific receptor-mediated uptake, and most of these ligand anchored nanostructures able to escape lysosomal degradation. DNA-based and stimuli responsive nano-carrier systems are the latest advancement in cancer targeting. The data exploration from various studies demonstrated that the DNA nanostructure and stimuli responsive drug delivery systems are perfect tools to overcome the problems existing in the cancer treatment including toxicity and compromised drug efficacy. In this light, the review summarized the insights about various types of DNA nanostructures and stimuli responsive nanocarrier systems applications for diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Fakhara Sabir
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Mahira Zeeshan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ushna Laraib
- Department of Pharmacy, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98615-538, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg, Germany
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| |
Collapse
|
6
|
Lin SY. Thermoresponsive gating membranes embedded with liquid crystal(s) for pulsatile transdermal drug delivery: An overview and perspectives. J Control Release 2019; 319:450-474. [PMID: 31901369 DOI: 10.1016/j.jconrel.2019.12.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 01/08/2023]
Abstract
Due to the circadian rhythm regulation of almost every biological process in the human body, physiological and biochemical conditions vary considerably over the course of a 24-h period. Thus, optimal drug delivery and therapy should be effectively controlled to achieve the desired therapeutic plasma concentrations and therapeutic drug responses at the required time according to chronopharmacological concepts, rather than continuous maintenance of constant drug concentrations for an extended time period. For many drugs, it is not always necessary to constantly deliver a drug into the human body under disease conditions due to rhythmic variations. Pulsatile drug delivery systems (PDDSs) have been receiving more attention in pharmaceutical development by providing a predetermined lag period, followed by a fast or rate-controlled drug release after application. PDDSs are characterized by a programmed drug release, which may release a drug at repeatable pulses to match the biological and clinical needs of a given disease therapy. This review article focuses on thermoresponsive gating membranes embedded with liquid crystals (LCs) for transdermal drug delivery using PDDS technology. In addition, the principal rationale and the advanced approaches for the use of PDDSs, the marketed products of chronotherapeutic DDSs with pulsatile function designed by various PDDS technologies, pulsatile drug delivery designed with thermoresponsive polymers, challenges and opportunities of transdermal drug delivery, and novel approaches of LC systems for drug delivery are reviewed and discussed. A brief overview of all academic research articles concerning single LC- or binary LC-embedded thermoresponsive membranes with a switchable on-off permeation function through topical application by an external temperature control, which may modulate the dosing interval and administration time according to the therapeutic needs of the human body, is also compiled and presented. In the near future, since thermal-based approaches have become a well-accepted method to enhance transdermal delivery of different water-soluble drugs and macromolecules, a combination of the thermal-assisted approach with thermoresponsive LCs membranes will have the potential to improve PDDS applications but still poses a great challenge.
Collapse
Affiliation(s)
- Shan-Yang Lin
- Laboratory of Pharmaceutics and Biopharmaceutics, Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, No.306, Yuanpei Street, Hsin Chu 30015, Taiwan.
| |
Collapse
|
7
|
Rödl W, Taschauer A, Schaffert D, Wagner E, Ogris M. Synthesis of Polyethylenimine-Based Nanocarriers for Systemic Tumor Targeting of Nucleic Acids. Methods Mol Biol 2019; 1943:83-99. [PMID: 30838611 DOI: 10.1007/978-1-4939-9092-4_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nucleic acid-based therapies offer the option to treat tumors in a highly selective way, while toxicity towards healthy tissue can be avoided when proper delivery vehicles are used. We have recently developed carrier systems based on linear polyethylenimine, which after chemical coupling of protein- or peptide-based ligands can form nanosized polyplexes with plasmid DNA (pDNA) or RNA and deliver their payload into target cells by receptor-mediated endocytosis. This chapter describes the synthesis of LPEI from a precursor polymer and the current coupling techniques and purification procedure for peptide conjugates with linear polyethylenimine. A protocol is also given for the formation and characterization of polyplexes formed with LPEI conjugate and pDNA.
Collapse
Affiliation(s)
- Wolfgang Rödl
- Pharmaceutical Biotechnology, Center for System Based Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | - Alexander Taschauer
- Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Department of Pharmaceutical Chemistry, Center of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - David Schaffert
- Department of Molecular Biology, Aarhus University, Aarhus, Denmark
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System Based Drug Research, Ludwig-Maximilians-University, Munich, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-University, Munich, Germany
| | - Manfred Ogris
- Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Department of Pharmaceutical Chemistry, Center of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
- Center for NanoScience (CeNS), Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
8
|
Ahn S, Ardoña HAM, Lind JU, Eweje F, Kim SL, Gonzalez GM, Liu Q, Zimmerman JF, Pyrgiotakis G, Zhang Z, Beltran-Huarac J, Carpinone P, Moudgil BM, Demokritou P, Parker KK. Mussel-inspired 3D fiber scaffolds for heart-on-a-chip toxicity studies of engineered nanomaterials. Anal Bioanal Chem 2018; 410:6141-6154. [PMID: 29744562 PMCID: PMC6230313 DOI: 10.1007/s00216-018-1106-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/10/2018] [Accepted: 04/23/2018] [Indexed: 01/19/2023]
Abstract
Due to the unique physicochemical properties exhibited by materials with nanoscale dimensions, there is currently a continuous increase in the number of engineered nanomaterials (ENMs) used in consumer goods. However, several reports associate ENM exposure to negative health outcomes such as cardiovascular diseases. Therefore, understanding the pathological consequences of ENM exposure represents an important challenge, requiring model systems that can provide mechanistic insights across different levels of ENM-based toxicity. To achieve this, we developed a mussel-inspired 3D microphysiological system (MPS) to measure cardiac contractility in the presence of ENMs. While multiple cardiac MPS have been reported as alternatives to in vivo testing, most systems only partially recapitulate the native extracellular matrix (ECM) structure. Here, we show how adhesive and aligned polydopamine (PDA)/polycaprolactone (PCL) nanofiber can be used to emulate the 3D native ECM environment of the myocardium. Such nanofiber scaffolds can support the formation of anisotropic and contractile muscular tissues. By integrating these fibers in a cardiac MPS, we assessed the effects of TiO2 and Ag nanoparticles on the contractile function of cardiac tissues. We found that these ENMs decrease the contractile function of cardiac tissues through structural damage to tissue architecture. Furthermore, the MPS with embedded sensors herein presents a way to non-invasively monitor the effects of ENM on cardiac tissue contractility at different time points. These results demonstrate the utility of our MPS as an analytical platform for understanding the functional impacts of ENMs while providing a biomimetic microenvironment to in vitro cardiac tissue samples. Graphical Abstract Heart-on-a-chip integrated with mussel-inspired fiber scaffolds for a high-throughput toxicological assessment of engineered nanomaterials.
Collapse
Affiliation(s)
- Seungkuk Ahn
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Herdeline Ann M Ardoña
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Johan U Lind
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
- Department of Micro- and Nanotechnology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Feyisayo Eweje
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Sean L Kim
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Grant M Gonzalez
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Qihan Liu
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - John F Zimmerman
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, MA, 02138, USA
| | - Zhenyuan Zhang
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, MA, 02138, USA
| | - Juan Beltran-Huarac
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, MA, 02138, USA
| | - Paul Carpinone
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, MA, 02138, USA
| | - Brij M Moudgil
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, MA, 02138, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, MA, 02138, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA.
| |
Collapse
|
9
|
|
10
|
Sun M, Wang K, Oupický D. Advances in Stimulus-Responsive Polymeric Materials for Systemic Delivery of Nucleic Acids. Adv Healthc Mater 2018; 7:10.1002/adhm.201701070. [PMID: 29227047 PMCID: PMC5821579 DOI: 10.1002/adhm.201701070] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/13/2017] [Indexed: 01/02/2023]
Abstract
Polymeric materials that respond to a variety of endogenous and external stimuli are actively developed to overcome the main barriers to successful systemic delivery of therapeutic nucleic acids. Here, an overview of viable stimuli that are proved to improve systemic delivery of nucleic acids is provided. The main focus is placed on nucleic acid delivery systems (NADS) based on polymers that respond to pathological or physiological changes in pH, redox state, enzyme levels, hypoxia, and reactive oxygen species levels. Additional discussion is focused on NADS suitable for applications that use external stimuli, such as light, ultrasound, and local hyperthermia.
Collapse
Affiliation(s)
- Minjie Sun
- State Key Laboratory of Natural Medicines, Key Laboratory on Protein Chemistry and Structural Biology, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Kaikai Wang
- State Key Laboratory of Natural Medicines, Key Laboratory on Protein Chemistry and Structural Biology, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - David Oupický
- State Key Laboratory of Natural Medicines, Key Laboratory on Protein Chemistry and Structural Biology, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P.R. China
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
11
|
Vicario-de-la-Torre M, Forcada J. The Potential of Stimuli-Responsive Nanogels in Drug and Active Molecule Delivery for Targeted Therapy. Gels 2017; 3:E16. [PMID: 30920515 PMCID: PMC6318695 DOI: 10.3390/gels3020016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/11/2017] [Accepted: 04/28/2017] [Indexed: 12/22/2022] Open
Abstract
Nanogels (NGs) are currently under extensive investigation due to their unique properties, such as small particle size, high encapsulation efficiency and protection of active agents from degradation, which make them ideal candidates as drug delivery systems (DDS). Stimuli-responsive NGs are cross-linked nanoparticles (NPs), composed of polymers, natural, synthetic, or a combination thereof that can swell by absorption (uptake) of large amounts of solvent, but not dissolve due to the constituent structure of the polymeric network. NGs can undergo change from a polymeric solution (swell form) to a hard particle (collapsed form) in response to (i) physical stimuli such as temperature, ionic strength, magnetic or electric fields; (ii) chemical stimuli such as pH, ions, specific molecules or (iii) biochemical stimuli such as enzymatic substrates or affinity ligands. The interest in NGs comes from their multi-stimuli nature involving reversible phase transitions in response to changes in the external media in a faster way than macroscopic gels or hydrogels due to their nanometric size. NGs have a porous structure able to encapsulate small molecules such as drugs and genes, then releasing them by changing their volume when external stimuli are applied.
Collapse
Affiliation(s)
| | - Jacqueline Forcada
- Bionanoparticles Group, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain.
| |
Collapse
|
12
|
Degradable Polyethylenimine-Based Gene Carriers for Cancer Therapy. Top Curr Chem (Cham) 2017; 375:34. [DOI: 10.1007/s41061-017-0124-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/20/2017] [Indexed: 12/22/2022]
|
13
|
Li Y, Gao J, Zhang C, Cao Z, Cheng D, Liu J, Shuai X. Stimuli-Responsive Polymeric Nanocarriers for Efficient Gene Delivery. Top Curr Chem (Cham) 2017; 375:27. [DOI: 10.1007/s41061-017-0119-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/31/2017] [Indexed: 11/25/2022]
|
14
|
|
15
|
Zhang H, Li Q, Zhang Y, Xia Y, Yun L, Zhang Q, Zhang T, Chen X, Chen H, Li W. A nanogel with passive targeting function and adjustable polyplex surface properties for efficient anti-tumor gene therapy. RSC Adv 2016. [DOI: 10.1039/c6ra13707e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A dual responsive nanogel with tuneable polyplex properties was finely prepared. Its highin vivo/vitrogene transfection ability and passive cellular targeting function strongly promoted intratumor accumulation and tumor inhibition.
Collapse
Affiliation(s)
- Haizhou Zhang
- Department of Cardiac Surgery
- Shandong Provincial Hospital Affiliated to Shandong University
- Jinan 250021
- China
| | - Qingbao Li
- Department of Cardiac Surgery
- Shandong Provincial Hospital Affiliated to Shandong University
- Jinan 250021
- China
| | - Yingying Zhang
- International Joint Cancer Institute
- The Second Military Medical University
- Shanghai 200433
- PR China
| | - Yu Xia
- International Joint Cancer Institute
- The Second Military Medical University
- Shanghai 200433
- PR China
| | - Liang Yun
- Dalian Institute for Drug Control
- City of Dalian
- China
| | - Qian Zhang
- Department of Cardiac Surgery
- Shandong Provincial Hospital Affiliated to Shandong University
- Jinan 250021
- China
| | - Tao Zhang
- Department of Cardiac Surgery
- Shandong Provincial Hospital Affiliated to Shandong University
- Jinan 250021
- China
| | - Xia Chen
- International Joint Cancer Institute
- The Second Military Medical University
- Shanghai 200433
- PR China
| | - Huaiwen Chen
- International Joint Cancer Institute
- The Second Military Medical University
- Shanghai 200433
- PR China
| | - Wei Li
- International Joint Cancer Institute
- The Second Military Medical University
- Shanghai 200433
- PR China
| |
Collapse
|
16
|
Cao P, Sun X, Liang Y, Gao X, Li X, Li W, Song Z, Li W, Liang G. Gene delivery by a cationic and thermosensitive nanogel promoted established tumor growth inhibition. Nanomedicine (Lond) 2015; 10:1585-97. [PMID: 25706247 DOI: 10.2217/nnm.15.20] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: In vivo stability and consequent high tumor accumulation is highly desired for nonviral gene therapy. Materials & methods: Here, a well-defined cationic nanogel system (NPS) was facilely prepared for gastric tumor therapy. Results: The physical chemical properties of NPS were finely regulated and investigated. In vitro transfer efficiency of NPS was obviously promoted due to stable polyplex structure, small size, narrow size distribution and weak surface potential. Interestingly, the transfection was further enhanced by its passive targeting function. Intratumor accumulation was significantly promoted post intravenous administrated to Balb/c nude mice. Thus, the established gastric tumor (N87) growth was significantly inhibited by p53 as delivered by NPS. Conclusion: Such noncytotoxic cationic thermosensitive NPS can be effective for practicable gene therapy.
Collapse
Affiliation(s)
- Peng Cao
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, PR China
| | - Xudong Sun
- Key Laboratory for Anisotropy & Texture of Materials, Northeastern University, Shenyang, PR China
| | - Yong Liang
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, PR China
| | - Xu Gao
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, PR China
| | - Xiaoming Li
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, PR China
| | - Wei Li
- Department of Geriatric Neurology, Nanjing Medical University Affiliated to Nanjing Brain Hospital, Nanjing, Jiangsu, PR China
| | - Zhenquan Song
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, PR China
| | - Wei Li
- International Joint Cancer Institute, Second Military Medical University, Shanghai, PR China
| | - Guobiao Liang
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, PR China
| |
Collapse
|
17
|
Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014; 13:813-27. [PMID: 25287120 DOI: 10.1038/nrd4333] [Citation(s) in RCA: 1009] [Impact Index Per Article: 100.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases.
Collapse
|
18
|
Jhaveri A, Deshpande P, Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release 2014; 190:352-70. [DOI: 10.1016/j.jconrel.2014.05.002] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 12/29/2022]
|
19
|
Calejo MT, Sande SA, Nyström B. Thermoresponsive polymers as gene and drug delivery vectors: architecture and mechanism of action. Expert Opin Drug Deliv 2013; 10:1669-86. [DOI: 10.1517/17425247.2013.846906] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Zhu L, Torchilin VP. Stimulus-responsive nanopreparations for tumor targeting. Integr Biol (Camb) 2013; 5:96-107. [PMID: 22869005 DOI: 10.1039/c2ib20135f] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanopreparations such as liposomes, micelles, polymeric and inorganic nanoparticles, and small molecule/nucleic acid/protein conjugates have demonstrated various advantages over "naked" therapeutic molecules. These nanopreparations can be further engineered with functional moieties to improve their performance in terms of circulation longevity, targetability, enhanced intracellular penetration, carrier-mediated enhanced visualization, and stimuli-sensitivity. The idea of application of a stimulus-sensitive drug or imaging agent delivery system for tumor targeting is based on the significant abnormalities in the tumor microenvironment and its cells, such as an acidic pH, altered redox potential, up-regulated proteins and hyperthermia. These internal conditions as well as external stimuli, such as magnetic field, ultrasound and light, can be used to modify the behavior of the nanopreparations that control drug release, improve drug internalization, control the intracellular drug fate and even allow for certain physical interactions, resulting in an enhanced tumor targeting and antitumor effect. This article provides a critical view of current stimulus-sensitive drug delivery strategies and possible future directions in tumor targeting with primary focus on the combined use of stimulus-sensitivity with other strategies in the same nanopreparation, including multifunctional nanopreparations and theranostics.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 140 The Fenway, Boston, MA 02115, USA
| | | |
Collapse
|
21
|
Alexander C, Fernandez Trillo F. Bioresponsive Polyplexes and Micelleplexes. SMART MATERIALS FOR DRUG DELIVERY 2013. [DOI: 10.1039/9781849736800-00256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The delivery of nucleic acids (NAs) is hindered by several factors, such as the size of the biomolecule (micron size for plasmid DNA), the presence of different biological barriers or the degradation of NAs. Most of these limitations are avoided by complexation with polycationic species, which collapse NAs into nanometer-sized polyplexes that can be efficiently internalized into the target cells. Because there are subtle changes in physiological conditions, such as the drop in pH at the endosome, or the increase in temperature in tumor tissue, stimuli responsive synthetic polymers are ideal candidates for the synthesis of efficient gene delivery vehicles. In this chapter, representative examples of “smart” polypexes that exploit these changes in physiological environment for the delivery of NAs are described, and the transfection efficiency of pH-, redox-, temperature- and light-responsive polyplexes is analyzed.
Collapse
|
22
|
Rödl W, Schaffert D, Wagner E, Ogris M. Synthesis of polyethylenimine-based nanocarriers for systemic tumor targeting of nucleic acids. Methods Mol Biol 2013; 948:105-20. [PMID: 23070766 DOI: 10.1007/978-1-62703-140-0_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nucleic acid-based therapies offer the option to treat tumors in a highly selective way, while toxicity towards healthy tissue can be avoided when proper delivery vehicles are used. We have recently developed carrier systems based on linear polyethylenimine, which after chemical coupling of proteinous or peptidic ligands can form nanosized polyplexes with plasmid DNA or RNA and deliver their payload into target cells by receptor-mediated endocytosis. This chapter describes the synthesis of linear PEI (LPEI) from a precursor polymer and the current coupling techniques and purification procedure for peptide conjugates with linear polyethylenimine. A protocol is also given for the formation and characterization of polyplexes formed with LPEI conjugate and plasmid DNA.
Collapse
Affiliation(s)
- Wolfgang Rödl
- Department of Pharmacy, Center for System Based Drug Research, Pharmaceutical Biotechnology, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | |
Collapse
|
23
|
Abstract
Solid tumors form a heterogeneous group of diseases, although common features such as hyperproliferation, overexpression of certain growth factor receptors and deregulated vessel formation including leaky vasculature give the opportunity to target macromolecular drug and nucleic acid carriers to tumor tissue. Similar to other macromolecular drugs, nucleic acid carriers have to be designed to enable tumor targeting after systemic injection. Chemical modification of nucleic acids makes them resistant towards enzymatic degradation. Cationic lipids or polycations condense nucleic acids into small, virus-like structures and the surface modification with hydrophilic polymers allows passive accumulation in tumor tissue; tumor cell binding ligands allow cellular targeting. To avoid toxic side effects, biodegradable and biocompatible carriers were designed. The design of thermoresponsive gene carriers allowed their selective tumor accumulation by locoregional hyperthermia. As a therapeutic concept, tumor-specific delivery of antitumoral RNA was realized in an orthotopic brain tumor model. The combination of gene- and radio-therapy enabled selective accumulation of radionuclides in tumors and boosted antitumoral effects. Hence, combining a smart delivery concept for nucleic acids with a suitable therapeutic strategy will allow successful treatment of otherwise incurable malignant diseases.
Collapse
|
24
|
Shim MS, Kwon YJ. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv Drug Deliv Rev 2012; 64:1046-59. [PMID: 22329941 DOI: 10.1016/j.addr.2012.01.018] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 01/30/2012] [Accepted: 01/30/2012] [Indexed: 12/11/2022]
Abstract
Multiple extra- and intracellular obstacles, including low stability in blood, poor cellular uptake, and inefficient endosomal escape and disassembly in the cytoplasm, have to be overcome in order to deliver nucleic acids for gene therapy. This review introduces the recent advances in tackling the key challenges in achieving efficient, targeted, and safe nonviral gene delivery using various nucleic acid-containing nanomaterials that are designed to respond to various extra- and intracellular biological stimuli (e.g., pH, redox potential, and enzyme) as well as external artificial triggers (e.g., light and ultrasound). Gene delivery in combination with molecular imaging and targeting enables diagnostic assessment, treatment monitoring and quantification of efficiency, and confirmation of cure, thus fulfilling the great promise of efficient and personalized medicine. Nanomaterials platform for combined imaging and gene therapy, nanotheragnostics, using stimuli-responsive materials is also highlighted in this review. It is clear that developing novel multifunctional nonviral vectors, which transform their physico-chemical properties in response to various stimuli in a timely and spatially controlled manner, is highly desired to translate the promise of gene therapy for the clinical success.
Collapse
|
25
|
Klutz K, Willhauck MJ, Dohmen C, Wunderlich N, Knoop K, Zach C, Senekowitsch-Schmidtke R, Gildehaus FJ, Ziegler S, Fürst S, Göke B, Wagner E, Ogris M, Spitzweg C. Image-guided tumor-selective radioiodine therapy of liver cancer after systemic nonviral delivery of the sodium iodide symporter gene. Hum Gene Ther 2011; 22:1563-74. [PMID: 21851208 DOI: 10.1089/hum.2011.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We reported the induction of tumor-selective iodide uptake and therapeutic efficacy of (131)I in a hepatocellular carcinoma (HCC) xenograft mouse model, using novel polyplexes based on linear polyethylenimine (LPEI), shielded by polyethylene glycol (PEG), and coupled with the epidermal growth factor receptor-specific peptide GE11 (LPEI-PEG-GE11). The aim of the current study in the same HCC model was to evaluate the potential of biodegradable nanoparticle vectors based on pseudodendritic oligoamines (G2-HD-OEI) for systemic sodium iodide symporter (NIS) gene delivery and to compare efficiency and tumor specificity with LPEI-PEG-GE11. Transfection of HCC cells with NIS cDNA, using G2-HD-OEI, resulted in a 44-fold increase in iodide uptake in vitro as compared with a 22-fold increase using LPEI-PEG-GE11. After intravenous application of G2-HD-OEI/NIS HCC tumors accumulated 6-11% ID/g (123)I (percentage of the injected dose per gram tumor tissue) with an effective half-life of 10 hr (tumor-absorbed dose, 281 mGy/MBq) as measured by (123)I scintigraphic gamma camera or single-photon emission computed tomography computed tomography (SPECT CT) imaging, as compared with 6.5-9% ID/g with an effective half-life of only 6 hr (tumor-absorbed dose, 47 mGy/MBq) for LPEI-PEG-GE11. After only two cycles of G2-HD-OEI/NIS/(131)I application, a significant delay in tumor growth was observed with markedly improved survival. A similar degree of therapeutic efficacy had been observed after four cycles of LPEI-PEG-GE11/(131)I. These results clearly demonstrate that biodegradable nanoparticles based on OEI-grafted oligoamines show increased efficiency for systemic NIS gene transfer in an HCC model with similar tumor selectivity as compared with LPEI-PEG-GE11, and therefore represent a promising strategy for NIS-mediated radioiodine therapy of HCC.
Collapse
Affiliation(s)
- Kathrin Klutz
- Department of Internal Medicine II, Ludwig-Maximilians-University, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shenoi MM, Shah NB, Griffin RJ, Vercellotti GM, Bischof JC. Nanoparticle preconditioning for enhanced thermal therapies in cancer. Nanomedicine (Lond) 2011; 6:545-63. [PMID: 21542691 DOI: 10.2217/nnm.10.153] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nanoparticles show tremendous promise in the safe and effective delivery of molecular adjuvants to enhance local cancer therapy. One important form of local cancer treatment that suffers from local recurrence and distant metastases is thermal therapy. In this article, we review a new concept involving the use of nanoparticle-delivered adjuvants to 'precondition' or alter the vascular and immunological biology of the tumor to enhance its susceptibility to thermal therapy. To this end, a number of opportunities to combine nanoparticles with vascular and immunologically active agents are reviewed. One specific example of preconditioning involves a gold nanoparticle tagged with a vascular targeting agent (i.e., TNF-α). This nanoparticle embodiment demonstrates preconditioning through a dramatic reduction in tumor blood flow and induction of vascular damage, which recruits a strong and sustained inflammatory infiltrate in the tumor. The ability of this nanoparticle preconditioning to enhance subsequent heat or cold thermal therapy in a variety of tumor models is reviewed. Finally, the potential for future clinical imaging to judge the extent of preconditioning and thus the optimal timing and extent of combinatorial thermal therapy is discussed.
Collapse
|
27
|
Zhang R, Wang Y, Du FS, Wang YL, Tan YX, Ji SP, Li ZC. Thermoresponsive Gene Carriers Based on Polyethylenimine-graft-
Poly[oligo(ethylene glycol) methacrylate]. Macromol Biosci 2011; 11:1393-406. [DOI: 10.1002/mabi.201100094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/17/2011] [Indexed: 11/12/2022]
|
28
|
Stampfl A, Maier M, Radykewicz R, Reitmeir P, Göttlicher M, Niessner R. Langendorff heart: a model system to study cardiovascular effects of engineered nanoparticles. ACS NANO 2011; 5:5345-5353. [PMID: 21630684 DOI: 10.1021/nn200801c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Engineered nanoparticles (ENPs) are produced and used in increasing quantities for industrial products, food, and drugs. The fate of ENPs after usage and impact on health is less known. Especially as air pollution, suspended nanoparticles have raised some attention, causing diseases of the lung and cardiovascular system. Human health risks may arise from inhalation of ENPs with associated inflammation, dispersion in the body, and exposure of vulnerable organs (e.g., heart, brain) and tissues with associated toxicity. However, underlying mechanisms are largely unknown. Furthermore future use of ENPs in therapeutic applications is being researched. Therefore knowledge about potential cardiovascular risks due to exposure to ENPs is highly demanded, but there are no established biological testing models yet. Therefore, we established the isolated beating heart (Langendorff heart) as a model system to study cardiovascular effects of ENPs. This model enables observation and analysis of electrophysiological parameters over a minimal time period of 4 h without influence by systemic effects and allows the determination of stimulated release of substances under influence of ENPs. We found a significant dose and material dependent increase in heart rate accompanied by arrhythmia evoked by ENPs made of flame soot (Printex 90), spark discharge generated soot, anatas (TiO(2)), and silicon dioxide (SiO(2)). However, flame derived SiO(2) (Aerosil) and monodisperse polystyrene lattices exhibited no effects. The increase in heart rate is assigned to catecholamine release from adrenergic nerve endings within the heart. We propose the isolated Langendorff heart and its electrophysiological characterization as a suitable test model for studying cardiovascular ENP toxicity.
Collapse
Affiliation(s)
- Andreas Stampfl
- Institute of Toxicology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
de Vrij J, Willemsen RA, Lindholm L, Hoeben RC, Bangma CH, Barber C, Behr JP, Briggs S, Carlisle R, Cheng WS, Dautzenberg IJC, de Ridder C, Dzojic H, Erbacher P, Essand M, Fisher K, Frazier A, Georgopoulos LJ, Jennings I, Kochanek S, Koppers-Lalic D, Kraaij R, Kreppel F, Magnusson M, Maitland N, Neuberg P, Nugent R, Ogris M, Remy JS, Scaife M, Schenk-Braat E, Schooten E, Seymour L, Slade M, Szyjanowicz P, Totterman T, Uil TG, Ulbrich K, van der Weel L, van Weerden W, Wagner E, Zuber G. Adenovirus-derived vectors for prostate cancer gene therapy. Hum Gene Ther 2010; 21:795-805. [PMID: 19947826 DOI: 10.1089/hum.2009.203] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer is a leading cause of death among men in Western countries. Whereas the survival rate approaches 100% for patients with localized cancer, the results of treatment in patients with metastasized prostate cancer at diagnosis are much less successful. The patients are usually presented with a variety of treatment options, but therapeutic interventions in prostate cancer are associated with frequent adverse side effects. Gene therapy and oncolytic virus therapy may constitute new strategies. Already a wide variety of preclinical studies has demonstrated the therapeutic potential of such approaches, with oncolytic prostate-specific adenoviruses as the most prominent vector. The state of the art and future prospects of gene therapy in prostate cancer are reviewed, with a focus on adenoviral vectors. We summarize advances in adenovirus technology for prostate cancer treatment and highlight areas where further developments are necessary.
Collapse
Affiliation(s)
- Jeroen de Vrij
- Department of Molecular Cell Biology, Leiden University Medical Center , 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Soliman M, Allen S, Davies MC, Alexander C. Responsive polyelectrolyte complexes for triggered release of nucleic acid therapeutics. Chem Commun (Camb) 2010; 46:5421-33. [DOI: 10.1039/c0cc00794c] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
31
|
Abstract
Cationic polymers have been chemically modified with a variety of targeting molecules such as peptides, proteins, antibodies, sugars and vitamins for targeted delivery of nucleic acid drugs to specific cells. Stimuli-sensitive polymers exhibiting different size, charge and conformation in response to physiological signals from specific cells have also been utilized for targeted delivery. To achieve target-specific delivery of nucleic acids, conjugation chemistry is critical to produce stable nanosized polyplexes tethered with cell-recognizable ligands for facile cellular uptake via a receptor-mediated endocytic pathway. In this review, synthetic strategies of functional cationic polymers with various targeting ligands are presented.
Collapse
Affiliation(s)
- Hyejung Mok
- Department of Biological Sciences and the Graduate Program of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | |
Collapse
|
32
|
Zintchenko A, Susha AS, Concia M, Feldmann J, Wagner E, Rogach AL, Ogris M. Drug nanocarriers labeled with near-infrared-emitting quantum dots (quantoplexes): imaging fast dynamics of distribution in living animals. Mol Ther 2009; 17:1849-56. [PMID: 19707184 DOI: 10.1038/mt.2009.201] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The knowledge of the biodistribution of macromolecular drug formulations is a key to their successful development for specific tissue- and tumor-targeting after systemic application. Based on the polyplex formulations, we introduce novel drug nanocarriers, which we denote as "quantoplexes" incorporating near-infrared (IR)-emitting cadmium telluride (CdTe) quantum dots (QDs), polyethylenimine (PEI), and a macromolecular model drug [plasmid DNA (pDNA)], and demonstrate the ability of tracking these bioactive compounds in living animals. Intravenous application of bare QD into nude mice leads to rapid accumulation in the liver and peripheral regions resembling lymph nodes, followed by clearance via the liver within hours to days. Quantoplexes rapidly accumulate in the lung, liver, and spleen and the fluorescent signal is detectable for at least a week. Tracking quantoplexes immediately after intravenous injection shows rapid redistribution from the lung to the liver within 5 minutes, depending on the PEI topology and quantoplex formulation used. With polyethyleneglycol (PEG)-modified quantoplexes, blood circulation and passive tumor accumulation was measured in real time. The use of quantoplexes will strongly accelerate the development of tissue and tumor-targeted macromolecular drug carriers.
Collapse
Affiliation(s)
- Arkadi Zintchenko
- Center for Drug Research, Department of Pharmacy, Pharmaceutical Biology-Biotechnology, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 2006; 58:1655-1670. [PMID: 17125884 DOI: 10.1081/e-ebppc-120050042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 09/29/2006] [Indexed: 05/27/2023]
Abstract
Stimuli-responsive polymers show a sharp change in properties upon a small or modest change in environmental condition, e.g. temperature, light, salt concentration or pH. This behaviour can be utilised for the preparation of so-called 'smart' drug delivery systems, which mimic biological response behaviour to a certain extent. The possible environmental conditions to use for this purpose are limited due to the biomedical setting of drug delivery as application. Different organs, tissues and cellular compartments may have large differences in pH, which makes the pH a suitable stimulus. Therefore the majority of examples, discussed in this paper, deal with pH-responsive drug delivery system. Thermo-responsive polymer is also covered to a large extent, as well as double-responsive system. The physico-chemical behaviour underlying the phase transition will be discussed in brief. Then selected examples of applications are described.
Collapse
Affiliation(s)
- Dirk Schmaljohann
- Centre for Polymer Therapeutics, Welsh School of Pharmacy, Cardiff University and Cardiff Institute of Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff, CF10 3XF, Wales, UK.
| |
Collapse
|