1
|
Subramanian G, Kalidasan K, Quah S, Han QCG, Chan J, Wacker MG, Sampath P. Breaking barriers: Innovative approaches for skin delivery of RNA therapeutics. Int J Pharm 2024; 661:124435. [PMID: 38986965 DOI: 10.1016/j.ijpharm.2024.124435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
RNA therapeutics represent a rapidly expanding platform with game-changing prospects in personalized medicine. The disruptive potential of this technology will overhaul the standard of care with reference to both primary and specialty care. To date, RNA therapeutics have mostly been delivered parenterally via injection, but topical administration followed by intradermal or transdermal delivery represents an attractive method that is convenient to patients and minimally invasive. The skin barrier, particularly the lipid-rich stratum corneum, presents a significant hurdle to the uptake of large, charged oligonucleotide drugs. Therapeutic oligonucleotides need to be engineered for stability and specificity and formulated with state-of-the-art delivery strategies for efficient uptake. This review will cover various passive and active strategies deployed to enhance permeation through the stratum corneum and achieve effective delivery of RNA therapeutics to treat both local skin disorders and systemic diseases. Some strategies to achieve selectivity between local and systemic administration will also be discussed.
Collapse
Affiliation(s)
- Gowtham Subramanian
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Kamaladasan Kalidasan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Shan Quah
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Qi Chou Gavin Han
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore (NUS), 4 Science Drive 2, Singapore 117544, Singapore
| | - Justin Chan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Matthias G Wacker
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore (NUS), 4 Science Drive 2, Singapore 117544, Singapore.
| | - Prabha Sampath
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore; Skin Research Institute of Singapore (SRIS), 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore 308232, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore 138672, Singapore; Program in Cancer & Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
2
|
Kenchegowda M, Hani U, Al Fatease A, Haider N, Ramesh KVRNS, Talath S, Gangadharappa HV, Kiran Raj G, Padmanabha SH, Osmani RAM. Tiny titans- unravelling the potential of polysaccharides and proteins based dissolving microneedles in drug delivery and theranostics: A comprehensive review. Int J Biol Macromol 2023; 253:127172. [PMID: 37793514 DOI: 10.1016/j.ijbiomac.2023.127172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
In recent years, microneedles (MNs) have emerged as a promising alternative to traditional drug delivery systems in transdermal drug delivery. The use of MNs has demonstrated significant potential in improving patient acceptance and convenience while avoiding the invasiveness of traditional injections. Dissolving, solid, hollow, coated, and hydrogel microneedles are among the various types studied for drug delivery. Dissolving microneedles (DMNs), in particular, have gained attention for their safety, painlessness, patient convenience, and high delivery efficiency. This comprehensive review primarily focuses on different types of microneedles, fabrication methods, and materials used in fabrication of DMNs such as hyaluronic acid, chitosan, alginate, gelatin, collagen, silk fibroin, albumin, cellulose and starch, to list a few. The review also provides an exhaustive discussion on the applications of DMNs, including the delivery of vaccines, cosmetic agents, contraceptives, hormone and genes, and other therapeutic applications like for treating cancer, skin diseases, and diabetes, among others, are covered in this review. Additionally, this review highlights some of the DMN systems that are presently undergoing clinical trials. Finally, the review discusses current advances and trends in DMNs, as well as future prospective directions for this ground-breaking technology in drug delivery.
Collapse
Affiliation(s)
- Madhuchandra Kenchegowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Hosahalli V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - G Kiran Raj
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Sharath Honganoor Padmanabha
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India.
| |
Collapse
|
3
|
Yu Y, Gao Y, He L, Fang B, Ge W, Yang P, Ju Y, Xie X, Lei L. Biomaterial-based gene therapy. MedComm (Beijing) 2023; 4:e259. [PMID: 37284583 PMCID: PMC10239531 DOI: 10.1002/mco2.259] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/08/2023] Open
Abstract
Gene therapy, a medical approach that involves the correction or replacement of defective and abnormal genes, plays an essential role in the treatment of complex and refractory diseases, such as hereditary diseases, cancer, and rheumatic immune diseases. Nucleic acids alone do not easily enter the target cells due to their easy degradation in vivo and the structure of the target cell membranes. The introduction of genes into biological cells is often dependent on gene delivery vectors, such as adenoviral vectors, which are commonly used in gene therapy. However, traditional viral vectors have strong immunogenicity while also presenting a potential infection risk. Recently, biomaterials have attracted attention for use as efficient gene delivery vehicles, because they can avoid the drawbacks associated with viral vectors. Biomaterials can improve the biological stability of nucleic acids and the efficiency of intracellular gene delivery. This review is focused on biomaterial-based delivery systems in gene therapy and disease treatment. Herein, we review the recent developments and modalities of gene therapy. Additionally, we discuss nucleic acid delivery strategies, with a focus on biomaterial-based gene delivery systems. Furthermore, the current applications of biomaterial-based gene therapy are summarized.
Collapse
Affiliation(s)
- Yi Yu
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yijun Gao
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Liming He
- Department of StomatologyChangsha Stomatological HospitalChangshaChina
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Wenhui Ge
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoyan Xie
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
4
|
Kang H, Zuo Z, Lin R, Yao M, Han Y, Han J. The most promising microneedle device: present and future of hyaluronic acid microneedle patch. Drug Deliv 2022; 29:3087-3110. [PMID: 36151726 PMCID: PMC9518289 DOI: 10.1080/10717544.2022.2125600] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Microneedle patch (MNP) is an alternative to the oral route and subcutaneous injection with unique advantages such as painless administration, good compliance, and fewer side effects. Herein, we report MNP as a prominent strategy for drug delivery to treat local or systemic disease. Hyaluronic acid (HA) has advantageous properties, such as human autologous source, strong water absorption, biocompatibility, and viscoelasticity. Therefore, the Hyaluronic acid microneedle patch (HA MNP) occupies a large part of the MNP market. HA MNP is beneficial for wound healing, targeted therapy of certain specific diseases, extraction of interstitial skin fluid (ISF), and preservation of drugs. In this review, we summarize the benefits of HA and cross-linked HA (x-HA) as an MNP matrix. Then, we introduce the types of HA MNP, delivered substances, and drug distribution. Finally, we focus on the biomedical application of HA MNP as an excellent drug carrier in some specific diseases and the extraction and analysis of biomarkers. We also discuss the future development prospect of HA MNP in transdermal drug delivery systems (TDDS).
Collapse
Affiliation(s)
- Huizhi Kang
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhuo Zuo
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Ru Lin
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Muzi Yao
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Han
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jing Han
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
5
|
Trends in Drug- and Vaccine-based Dissolvable Microneedle Materials and Methods of Fabrication. Eur J Pharm Biopharm 2022; 173:54-72. [DOI: 10.1016/j.ejpb.2022.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/24/2022] [Accepted: 02/19/2022] [Indexed: 12/18/2022]
|
6
|
Singh P, Muhammad I, Nelson NE, Tran KTM, Vinikoor T, Chorsi MT, D’Orio E, Nguyen TD. Transdermal delivery for gene therapy. Drug Deliv Transl Res 2022; 12:2613-2633. [PMID: 35538189 PMCID: PMC9089295 DOI: 10.1007/s13346-022-01138-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
Gene therapy is a critical constituent of treatment approaches for genetic diseases and has gained tremendous attention. Treating and preventing diseases at the genetic level using genetic materials such as DNA or RNAs could be a new avenue in medicine. However, delivering genes is always a challenge as these molecules are sensitive to various enzymes inside the body, often produce systemic toxicity, and suffer from off-targeting problems. In this regard, transdermal delivery has emerged as an appealing approach to enable a high efficiency and low toxicity of genetic medicines. This review systematically summarizes outstanding transdermal gene delivery methods for applications in skin cancer treatment, vaccination, wound healing, and other therapies.
Collapse
Affiliation(s)
- Parbeen Singh
- Department of Mechanical Engineering, University of Connecticut, Storrs, USA
| | - I’jaaz Muhammad
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Nicole E. Nelson
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Khanh T. M. Tran
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Tra Vinikoor
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Meysam T. Chorsi
- Department of Mechanical Engineering, University of Connecticut, Storrs, USA ,Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| | - Ethan D’Orio
- Department of Biomedical Engineering, University of Connecticut, Storrs, USA ,Department of Biomedical Engineering and Department of Advanced Manufacturing for Energy Systems, Storrs, USA
| | - Thanh D. Nguyen
- Department of Mechanical Engineering, University of Connecticut, Storrs, USA ,Department of Biomedical Engineering, University of Connecticut, Storrs, USA
| |
Collapse
|
7
|
Dalvi M, Kharat P, Thakor P, Bhavana V, Singh SB, Mehra NK. Panorama of dissolving microneedles for transdermal drug delivery. Life Sci 2021; 284:119877. [PMID: 34384832 DOI: 10.1016/j.lfs.2021.119877] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/25/2021] [Accepted: 07/31/2021] [Indexed: 11/16/2022]
Abstract
Recently, microfabrication technology has been developed to increase the permeability of drugs for transdermal delivery. Microneedles are ultra-small needles usually in the micron size range (different dimensions in micron), generate pores, and allow for delivery of local medication in the systemic circulation via skin. The microneedles have been available in dissolving, solid, coated, hollow, and hydrogel-based microneedles. Dissolving microneedles have been fabricated using micro-molding, photo-polymerization, drawing lithography and droplet blowing techniques. Dissolving microneedles could be a valuable option for the delivery of low molecular weight drugs, peptides, enzymes, vaccines and bio-therapeutics. It consists of water-soluble materials including maltose, polyvinyl pyrrolidone, chondroitin sulfate, dextran, hyaluronic acid, and albumin. The microneedles have almost dissolved after patch removal, leaving only blunt stubs behind, which are easily removable. In this review, we summarize the major building blocks, classification, fabrication techniques, characterization, diffusion models and application of microneedles in diverse area. We also reviewed the regulatory aspects, computational studies, patents, clinical data, and market trends of microneedles.
Collapse
Affiliation(s)
- Mayuri Dalvi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pratik Kharat
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pradip Thakor
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
8
|
He T, Luo Y, Zhang Q, Men Z, Su T, Fan L, Chen H, Shen T. Hyalase-Mediated Cascade Degradation of a Matrix Barrier and Immune Cell Penetration by a Photothermal Microneedle for Efficient Anticancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26790-26799. [PMID: 34061496 DOI: 10.1021/acsami.1c06725] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For melanoma with high lethality and metastasis rate, traditional therapy has limited effects; local photothermal therapy (PTT) synergetic with immune therapy for cancer treatment can perhaps improve the situation. However, because of the natural existence of the tumor matrix barrier, the penetration depth of drugs and immune cells often dampens the efficacy of cancer treatment. Herein, we report an innovative synergetic PTT and immune therapy through dissolving microneedles for the codelivery of the hyaluronidase-modified semiconductor polymer nanoparticles containing poly(cyclopentadithiophene-alt-benzothiadiazole) and immune adjuvant polyinosinic-polycytidylic acid (PIC). Benefiting from the dissolution of an extracellular matrix of hyaluronidase, the semiconductor polymer nanoparticles and PIC penetrate the tumor deeply, under synergetic therapy with PTT, activating the immune cells and enhancing the T-cell immune response for inhibition of tumor growth and metastasis. This study provides a promising platform for effective melanoma treatment and a novel strategy to overcome the stromal barrier.
Collapse
Affiliation(s)
- Ting He
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Yu Luo
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
- Frontier Institute of Medical & Pharmaceutical Science and Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No. 333 Longteng Road, Shanghai 201620, P.R. China
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China
| | - Zening Men
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Tong Su
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, P.R. China
| | - Linpeng Fan
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Hangrong Chen
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
| | - Teng Shen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, P.R. China
| |
Collapse
|
9
|
Elahpour N, Pahlevanzadeh F, Kharaziha M, Bakhsheshi-Rad HR, Ramakrishna S, Berto F. 3D printed microneedles for transdermal drug delivery: A brief review of two decades. Int J Pharm 2021; 597:120301. [PMID: 33540018 DOI: 10.1016/j.ijpharm.2021.120301] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/31/2022]
Abstract
Microneedle (MN) technology shows excellent potential in controlled drug delivery, which has got rising attention from investigators and clinics. MNs can pierce through the stratum corneum layer of the skin into the epidermis, evading interaction with nerve fibers. MN patches have been fabricated using various types of materials and application processes. Recently, three-dimensional (3D) printing gives the prototyping and manufacturing methods the flexibility to produce the MN patches in a one-step manner with high levels of shape complexity and duplicability. This review aims to go through the last successes in 3D printed MN-based patches. In this regard, after the evaluation of various types of MNs and fabrication techniques, we will study different 3D printing approaches applied for MN patch fabrication. We further highlight the state of the art of the long-acting MNs and related progress with a specific look at what should come within the scope of upcoming researches.
Collapse
Affiliation(s)
- Nafiseh Elahpour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Farnoosh Pahlevanzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore.
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
10
|
Klietz ML, Kückelhaus M, Kaiser HW, Raschke MJ, Hirsch T, Aitzetmüller M. Stammzellen in der Regenerativen Medizin – Translationale Hürden und Möglichkeiten zur Überwindung. HANDCHIR MIKROCHIR P 2020; 52:338-349. [DOI: 10.1055/a-1122-8916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ZusammenfassungDer Einsatz von mesenchymalen Stammzellen in der regenerativen Medizin wird immer populärer. Nichtsdestotrotz ist ihre Anwendung im klinischen Alltag noch immer limitiert. Zahlreiche ethische, rechtliche und translationale Probleme sowie Ungewissheit bzgl. der Sicherheit hemmen noch immer die Entstehung von entsprechenden Therapien aus vielversprechenden wissenschaftlichen Ansätzen.Diese Arbeit soll die Hauptprobleme bei der Translation von stammzellbasierten Therapien aus der Grundlagenforschung und Präklinik in den klinischen Alltag darstellen, sowie Ansätze aufzeigen, diese zu überwinden.
Collapse
Affiliation(s)
- Marie-Luise Klietz
- Abteilung für Plastische-, Rekonstruktive und Ästhetische Chirurgie, Handchirurgie, Fachklinik Hornheide, Münster
- Sektion Plastische Chirurgie an der Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Münster
- Abteilung für Plastische und Rekonstruktive Chirurgie, Institut für Muskuloskelettale Medizin, Westfälische Wilhelms-Universität Münster
| | - Maximilian Kückelhaus
- Abteilung für Plastische-, Rekonstruktive und Ästhetische Chirurgie, Handchirurgie, Fachklinik Hornheide, Münster
- Sektion Plastische Chirurgie an der Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Münster
- Abteilung für Plastische und Rekonstruktive Chirurgie, Institut für Muskuloskelettale Medizin, Westfälische Wilhelms-Universität Münster
| | | | - Michael J. Raschke
- Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Münster
| | - Tobias Hirsch
- Abteilung für Plastische-, Rekonstruktive und Ästhetische Chirurgie, Handchirurgie, Fachklinik Hornheide, Münster
- Sektion Plastische Chirurgie an der Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Münster
- Abteilung für Plastische und Rekonstruktive Chirurgie, Institut für Muskuloskelettale Medizin, Westfälische Wilhelms-Universität Münster
| | - Matthias Aitzetmüller
- Sektion Plastische Chirurgie an der Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Münster
- Abteilung für Plastische und Rekonstruktive Chirurgie, Institut für Muskuloskelettale Medizin, Westfälische Wilhelms-Universität Münster
| |
Collapse
|
11
|
Zhang X, Wang Y, Chi J, Zhao Y. Smart Microneedles for Therapy and Diagnosis. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7462915. [PMID: 33623910 PMCID: PMC7877383 DOI: 10.34133/2020/7462915] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/26/2020] [Indexed: 01/26/2023]
Abstract
Microneedles represent a cutting-edge and idea-inspiring technology in biomedical engineering, which have attracted increasing attention of scientific researchers and medical staffs. Over the past decades, numerous great achievements have been made. The fabrication process of microneedles has been simplified and becomes more precise, easy-to-operate, and reusable. Besides, microneedles with various features have been developed and the microneedle materials have greatly expanded. In recent years, efforts have been focused on generating smart microneedles by endowing them with intriguing functions such as adhesion ability, responsiveness, and controllable drug release. Such improvements enable the microneedles to take an important step in practical applications including household drug delivery devices, wearable biosensors, biomedical assays, cell culture, and microfluidic chip analysis. In this review, the fabrication strategies, distinctive properties, and typical applications of the smart microneedles are discussed. Recent accomplishments, remaining challenges, and future prospects are also presented.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuetong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Junjie Chi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
12
|
Qu M, Kim HJ, Zhou X, Wang C, Jiang X, Zhu J, Xue Y, Tebon P, Sarabi SA, Ahadian S, Dokmeci MR, Zhu S, Gu Z, Sun W, Khademhosseini A. Biodegradable microneedle patch for transdermal gene delivery. NANOSCALE 2020; 12:16724-16729. [DOI: 10.1039/d0nr02759f] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A gelatin methacryloyl based microneedle patch has been developed for transdermal gene delivery both in vitro and in vivo.
Collapse
|
13
|
Singh P, Carrier A, Chen Y, Lin S, Wang J, Cui S, Zhang X. Polymeric microneedles for controlled transdermal drug delivery. J Control Release 2019; 315:97-113. [DOI: 10.1016/j.jconrel.2019.10.022] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/09/2019] [Accepted: 10/12/2019] [Indexed: 01/03/2023]
|
14
|
Lee WR, Lin YK, Alalaiwe A, Wang PW, Liu PY, Fang JY. Fractional Laser-Mediated siRNA Delivery for Mitigating Psoriasis-like Lesions via IL-6 Silencing. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:240-251. [PMID: 31855833 PMCID: PMC6923496 DOI: 10.1016/j.omtn.2019.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 11/08/2019] [Indexed: 02/02/2023]
Abstract
The poor permeability of topically applied macromolecules such as small interfering RNA (siRNA) has inhibited the translation to clinical application. In this study, the fractional CO2 laser-assisted approach was developed to describe siRNA permeation enhancement mediated by the created microchannels for silencing the gene to treat psoriasiform lesions. In vitro permeation using Franz cell and in vivo interleukin (IL)-6 silencing using psoriasis-like plaque in mice were evaluated to verify the impact of the laser irradiation. Low-fluence laser exposure enabled a significant increase in skin transport of siRNA, peptide, and 5-fluorouracil (5-FU). The laser treatment resulted in the enhancement of siRNA flux by 33- and 14-fold as compared to the control in nude mouse and pig skin, respectively. The laser exposure also promoted siRNA penetration across psoriatic and photoaging skins with the deficient barrier, although the enhancement level was minor compared to that of intact skin. The 3D images of confocal microscopy revealed a diffusion of macromolecules into the laser-created microchannels; the radial and vertical distribution to the surrounding and deep tissues followed this. A single laser treatment and the following topical siRNA administration were able to reduce IL-6 expression by 64% in the psoriatic skin model. Laser assistance led to the marked improvement in the plaque and the reduction of specific cytokine expression, keratinocyte proliferation, and neutrophil infiltration. Our data support the use of the fractional laser for delivery of functional nucleic acid into the skin and the target cells.
Collapse
Affiliation(s)
- Woan-Ruoh Lee
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Department of Dermatology, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Yin-Ku Lin
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Pei-Yin Liu
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
15
|
Formulation, characterization and evaluation of mRNA-loaded dissolvable polymeric microneedles (RNApatch). Sci Rep 2018; 8:11842. [PMID: 30087399 PMCID: PMC6081392 DOI: 10.1038/s41598-018-30290-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/27/2018] [Indexed: 01/08/2023] Open
Abstract
In this paper, we report a proof of concept study on the fabrication, characterization and therapeutic evaluation of in vitro transcribed messenger RNA (mRNA) loaded in a dissolving microneedle patch (RNApatch). We show that low molecular weight polyvinylpyrrolidone (PVP) can directly be used without further purification for RNApatch fabrication with no detectable mRNA degradation. Physical and functional integrity of mRNA stored within the RNApatch are completely preserved for at least 2 weeks under ambient conditions. While the loading of mRNA into RNApatch is limited by the solubility of mRNA in concentrated PVP solution, mechanical strength of RNApatch is not compromised by the presence of mRNA. RNApatch can mediate in vivo transgene expression of mRNA encoding luciferase for up to 72 hours and transfection efficiency and kinetics mediated by RNApatch compares favorably to subcutaneous injection. Interestingly, mRNA transfection efficiency does not correlate with contact surface area but instead increases with deeper delivery depths. In an E.G7-OVA immunotherapy model, RNApatch induces slightly higher cellular and humoral immune responses compared to subcutaneous injection. In conclusion, RNApatch is a viable delivery platform for mRNA and represents an attractive option with significant translation potential for the delivery of mRNA therapeutics.
Collapse
|
16
|
Ito Z, Takakura K, Suka M, Kanai T, Saito R, Fujioka S, Kajihara M, Yanagisawa H, Misawa T, Akiba T, Koido S, Ohkusa T. Prognostic impact of carbohydrate sulfotransferase 15 in patients with pancreatic ductal adenocarcinoma. Oncol Lett 2017; 13:4799-4805. [PMID: 28599481 PMCID: PMC5453115 DOI: 10.3892/ol.2017.6071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/27/2017] [Indexed: 12/30/2022] Open
Abstract
Patients with pancreatic ductal adenocarcinoma (PDA) typically succumb to mortality early, even following surgical resection. Therefore, prognostic factors associated with early mortality are required to improve the survival of patients with PDA following surgical resection. Carbohydrate sulfotransferase 15 (CHST15) is responsible for the biosynthesis of sulfated chondroitin sulfate E (CS-E), which serves a pivotal function in cancer progression by cleaving CD44. CHST15 and CD44 expression in PDA tissue were assessed as a prognostic factor in patients with PDA following surgical resection. A total of 36 consecutive patients with PDA were enrolled following surgical resection between January 2008 and December 2014. The intensities of CHST15 and CD44 expression were analyzed by immunohistochemical staining. The recurrence period was significantly earlier in the strong CHST15 expression group compared with the negative-to-moderate CHST15 expression group. Overall survival (OS) was also significantly decreased in the strong CHST15 expression group compared with the negative-to-moderate CHST15 expression group. Multivariate analysis also indicated significant associations between CHST15 overexpression and disease-free survival (DFS) and OS. However, expression of CD44 in PDA tissue was not associated with DFS or OS. The present study has demonstrated for the first time that high CHST15 expression in PDA tissue may represent a potential predictive marker of DFS and OS in patients with PDA following surgical resection.
Collapse
Affiliation(s)
- Zensho Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8564, Japan
| | - Kazuki Takakura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8564, Japan
| | - Machi Suka
- Department of Public Health and Environmental Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Tomoya Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8564, Japan
| | - Ryota Saito
- Department of Surgery, Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8564, Japan
| | - Shuichi Fujioka
- Department of Surgery, Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8564, Japan
| | - Mikio Kajihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8564, Japan
| | - Hiroyuki Yanagisawa
- Department of Public Health and Environmental Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Takeyuki Misawa
- Department of Surgery, Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8564, Japan
| | - Tadashi Akiba
- Department of Surgery, Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8564, Japan
| | - Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8564, Japan.,Institute of Clinical Medicine and Research, Jikei University School of Medicine, Kashiwa, Chiba 277-8564, Japan
| | - Toshifumi Ohkusa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8564, Japan.,Institute of Clinical Medicine and Research, Jikei University School of Medicine, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
17
|
Shaikh MH, Clarke DTW, Johnson NW, McMillan NAJ. Can gene editing and silencing technologies play a role in the treatment of head and neck cancer? Oral Oncol 2017; 68:9-19. [PMID: 28438299 DOI: 10.1016/j.oraloncology.2017.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/25/2017] [Accepted: 02/19/2017] [Indexed: 01/04/2023]
Abstract
Conventional treatment strategies have done little to improve the prognosis or disease-free survival in head and neck cancer (HNC) patients. Recent progress in our understanding of molecular aspects of head and neck squamous cell carcinoma (HNSCC) has provided insights into the potential use of molecular targeted therapies in combination with current treatment strategies. Here we review the current understanding of treatment modalities for both HPV-positive and HPV-negative HNSCCs with the potential to use gene editing and silencing technologies therapeutically. The development of sequence-specific RNA interference (RNAi) with its strong gene-specific silencing ability, high target specificity, greater potency and reduced side effects, has shown it to be a promising therapeutic candidate for treating cancers. CRISPR/Cas gene editing is the newest technology with the ability to delete, mutate or replace genes of interest and has great potential for treating HNSCCs. We also discuss the major challenge in using these approaches in HNSCC; that being the choice of target and the ability to deliver the payload. Finally, we highlight the potential combination of RNAi or CRIPSR/Cas with current treatment strategies and outline the possible path to the clinic.
Collapse
Affiliation(s)
- Mushfiq H Shaikh
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia; School of Medical Science, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia; Understanding Chronic Conditions Program, Menzies Health Institute Queensland, Australia.
| | - Daniel T W Clarke
- School of Medical Science, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia; Understanding Chronic Conditions Program, Menzies Health Institute Queensland, Australia.
| | - Newell W Johnson
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia; Understanding Chronic Conditions Program, Menzies Health Institute Queensland, Australia.
| | - Nigel A J McMillan
- School of Medical Science, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia; Understanding Chronic Conditions Program, Menzies Health Institute Queensland, Australia.
| |
Collapse
|
18
|
Moronkeji K, Todd S, Dawidowska I, Barrett SD, Akhtar R. The role of subcutaneous tissue stiffness on microneedle performance in a representative in vitro model of skin. J Control Release 2016; 265:102-112. [PMID: 27838272 DOI: 10.1016/j.jconrel.2016.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/14/2016] [Accepted: 11/08/2016] [Indexed: 12/28/2022]
Abstract
There has been growing interest in the mechanical behaviour of skin due to the rapid development of microneedle devices for drug delivery applications into skin. However, most in vitro experimentation studies that are used to evaluate microneedle performance do not consider the biomechanical properties of skin or that of the subcutaneous layers. In this study, a representative experimental model of skin was developed which was comprised of subcutaneous and muscle mimics. Neonatal porcine skin from the abdominal and back regions was used, with gelatine gels of differing water content (67, 80, 88 and 96%) to represent the subcutaneous tissue, and a type of ballistic gelatine, Perma-Gel®, as a muscle mimic. Dynamic nanoindentation was used to characterize the mechanical properties of each of these layers. A custom-developed impact test rig was used to apply dense polymethylmethacrylate (PMMA) microneedles to the skin models in a controlled and repeatable way with quantification of the insertion force and velocity. Image analysis methods were used to measure penetration depth and area of the breach caused by microneedle penetration following staining and optical imaging. The nanoindentation tests demonstrated that the tissue mimics matched expected values for subcutaneous and muscle tissue, and that the compliance of the subcutaneous mimics increased linearly with water content. The abdominal skin was thinner and less stiff as compared to back skin. The maximum force decreased with gel water content in the abdominal skin but not in the back skin. Overall, larger and deeper perforations were found in the skin models with increasing water content. These data demonstrate the importance of subcutaneous tissue on microneedle performance and the need for representative skin models in microneedle technology development.
Collapse
Affiliation(s)
- K Moronkeji
- Centre for Materials and Structures, School of Engineering, University of Liverpool, L69 3GH, United Kingdom
| | - S Todd
- Renephra Ltd., MedTech Centre, Manchester Science Park, Pencroft Way, M15 6JJ, United Kingdom
| | - I Dawidowska
- Renephra Ltd., MedTech Centre, Manchester Science Park, Pencroft Way, M15 6JJ, United Kingdom
| | - S D Barrett
- Department of Physics, University of Liverpool, L69 7ZE, United Kingdom
| | - R Akhtar
- Centre for Materials and Structures, School of Engineering, University of Liverpool, L69 3GH, United Kingdom.
| |
Collapse
|
19
|
Hickerson RP, Speaker TJ, Lara MF, González-González E, Flores MA, Contag CH, Kaspar RL. Non-Invasive Intravital Imaging of siRNA-Mediated Mutant Keratin Gene Repression in Skin. Mol Imaging Biol 2016; 18:34-42. [PMID: 26169581 DOI: 10.1007/s11307-015-0875-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Small interfering RNAs (siRNAs) specifically and potently inhibit target gene expression. Pachyonychia congenita (PC) is a skin disorder caused by mutations in genes encoding keratin (K) 6a/b, K16, and K17, resulting in faulty intermediate filaments. A siRNA targeting a single nucleotide, PC-relevant mutation inhibits K6a expression and has been evaluated in the clinic with encouraging results. PROCEDURES To better understand the pathophysiology of PC, and develop a model system to study siRNA delivery and visualize efficacy in skin, wild type (WT) and mutant K6a complementary DNAs (cDNAs) were fused to either enhanced green fluorescent protein or tandem tomato fluorescent protein cDNA to allow covisualization of mutant and WT K6a expression in mouse footpad skin using a dual fluorescence in vivo confocal imaging system equipped with 488 and 532 nm lasers. RESULTS Expression of mutant K6a/reporter resulted in visualization of keratin aggregates, while expression of WT K6a/reporter led to incorporation into filaments. Addition of mutant K6a-specific siRNA resulted in inhibition of mutant, but not WT, K6a/reporter expression. CONCLUSIONS Intravital imaging offers subcellular resolution for tracking functional activity of siRNA in real time and enables detailed analyses of therapeutic effects in individual mice to facilitate development of nucleic acid-based therapeutics for skin disorders.
Collapse
Affiliation(s)
- Robyn P Hickerson
- TransDerm Inc., 2161 Delaware Ave., Santa Cruz, CA, 95060, USA.,Centre for Dermatology and Genetic Medicine, University of Dundee, Dundee, UK
| | - Tycho J Speaker
- TransDerm Inc., 2161 Delaware Ave., Santa Cruz, CA, 95060, USA
| | - Maria Fernanda Lara
- TransDerm Inc., 2161 Delaware Ave., Santa Cruz, CA, 95060, USA.,Urology Research Unit Virgen de la Victoria and Regional Hospital, Malaga, Spain
| | - Emilio González-González
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.,Canvax Biotech S.L., Technological Park, Cordoba, Spain
| | - Manuel A Flores
- TransDerm Inc., 2161 Delaware Ave., Santa Cruz, CA, 95060, USA
| | - Christopher H Contag
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.,Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.,Departments of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Roger L Kaspar
- TransDerm Inc., 2161 Delaware Ave., Santa Cruz, CA, 95060, USA.
| |
Collapse
|
20
|
Chen W, Li H, Shi D, Liu Z, Yuan W. Microneedles As a Delivery System for Gene Therapy. Front Pharmacol 2016; 7:137. [PMID: 27303298 PMCID: PMC4880556 DOI: 10.3389/fphar.2016.00137] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/10/2016] [Indexed: 01/20/2023] Open
Abstract
Gene delivery systems can be divided to two major types: vector-based (either viral vector or non-viral vector) and physical delivery technologies. Many physical carriers, such as electroporation, gene gun, ultrasound start to be proved to have the potential to enable gene therapy. A relatively new physical delivery technology for gene delivery consists of microneedles (MNs), which has been studied in many fields and for many molecule types and indications. Microneedles can penetrate the stratum corneum, which is the main barrier for drug delivery through the skin with ease of administration and without significant pain. Many different kinds of MNs, such as metal MNs, coated MNs, dissolving MNs have turned out to be promising in gene delivery. In this review, we discussed the potential as well as the challenges of utilizing MNs to deliver nucleic acids for gene therapy. We also proposed that a combination of MNs and other gene delivery approaches may lead to a better delivery system for gene therapy.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, Xinhua Hospital affiliated to the Medical School of Shanghai Jiao Tong University Shanghai, China
| | - Hui Li
- School of Pharmacy, Shanghai Jiao Tong University Shanghai, China
| | - De Shi
- Department of Neurology, Xinhua Hospital affiliated to the Medical School of Shanghai Jiao Tong University Shanghai, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital affiliated to the Medical School of Shanghai Jiao Tong University Shanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
21
|
Deng Y, Chen J, Zhao Y, Yan X, Zhang L, Choy K, Hu J, Sant HJ, Gale BK, Tang T. Transdermal Delivery of siRNA through Microneedle Array. Sci Rep 2016; 6:21422. [PMID: 26888011 PMCID: PMC4757825 DOI: 10.1038/srep21422] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/22/2016] [Indexed: 01/07/2023] Open
Abstract
Successful development of siRNA therapies has significant potential for the treatment of skin conditions (alopecia, allergic skin diseases, hyperpigmentation, psoriasis, skin cancer, pachyonychia congenital) caused by aberrant gene expression. Although hypodermic needles can be used to effectively deliver siRNA through the stratum corneum, the major challenge is that this approach is painful and the effects are restricted to the injection site. Microneedle arrays may represent a better way to deliver siRNAs across the stratum corneum. In this study, we evaluated for the first time the ability of the solid silicon microneedle array for punching holes to deliver cholesterol-modified housekeeping gene (Gapdh) siRNA to the mouse ear skin. Treating the ear with microneedles showed permeation of siRNA in the skin and could reduce Gapdh gene expression up to 66% in the skin without accumulation in the major organs. The results showed that microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively.
Collapse
Affiliation(s)
- Yan Deng
- Department of Obstetrics &Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, China
| | - Jiao Chen
- Department of Obstetrics &Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, China
| | - Yi Zhao
- Department of Obstetrics &Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiaohui Yan
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwongwai Choy
- Department of Obstetrics &Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, China
| | - Jun Hu
- Peking University Shenzhen Hospital, Shenzhen, China
| | - Himanshu J Sant
- State of Utah Centre of Excellence for Biomedical Microfluidics, Departments of Bioengineering and Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Bruce K Gale
- State of Utah Centre of Excellence for Biomedical Microfluidics, Departments of Bioengineering and Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Tao Tang
- Department of Obstetrics &Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, China
| |
Collapse
|
22
|
Aljuffali IA, Lin YK, Fang JY. Noninvasive approach for enhancing small interfering RNA delivery percutaneously. Expert Opin Drug Deliv 2015; 13:265-80. [DOI: 10.1517/17425247.2016.1121988] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Kaspar RL, Hickerson RP, González-González E, Flores MA, Speaker TP, Rogers FA, Milstone LM, Contag CH. Imaging Functional Nucleic Acid Delivery to Skin. Methods Mol Biol 2015; 1372:1-24. [PMID: 26530911 DOI: 10.1007/978-1-4939-3148-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Monogenic skin diseases arise from well-defined single gene mutations, and in some cases a single point mutation. As the target cells are superficial, these diseases are ideally suited for treatment by nucleic acid-based therapies as well as monitoring through a variety of noninvasive imaging technologies. Despite the accessibility of the skin, there remain formidable barriers for functional delivery of nucleic acids to the target cells within the dermis and epidermis. These barriers include the stratum corneum and the layered structure of the skin, as well as more locally, the cellular, endosomal and nuclear membranes. A wide range of technologies for traversing these barriers has been described and moderate success has been reported for several approaches. The lessons learned from these studies include the need for combinations of approaches to facilitate nucleic acid delivery across these skin barriers and then functional delivery across the cellular and nuclear membranes for expression (e.g., reporter genes, DNA oligonucleotides or shRNA) or into the cytoplasm for regulation (e.g., siRNA, miRNA, antisense oligos). The tools for topical delivery that have been evaluated include chemical, physical and electrical methods, and the development and testing of each of these approaches has been greatly enabled by imaging tools. These techniques allow delivery and real time monitoring of reporter genes, therapeutic nucleic acids and also triplex nucleic acids for gene editing. Optical imaging is comprised of a number of modalities based on properties of light-tissue interaction (e.g., scattering, autofluorescence, and reflectance), the interaction of light with specific molecules (e.g., absorbtion, fluorescence), or enzymatic reactions that produce light (bioluminescence). Optical imaging technologies operate over a range of scales from macroscopic to microscopic and if necessary, nanoscopic, and thus can be used to assess nucleic acid delivery to organs, regions, cells and even subcellular structures. Here we describe the animal models, reporter genes, imaging approaches and general strategies for delivery of nucleic acids to cells in the skin for local expression (e.g., plasmid DNA) or gene silencing (e.g., siRNA) with the intent of developing nucleic acid-based therapies to treat diseases of the skin.
Collapse
Affiliation(s)
- Roger L Kaspar
- TransDerm Inc., 2161 Delaware Ave, Santa Cruz, CA, 95060, USA.
| | - Robyn P Hickerson
- Centre for Dermatology and Genetic Medicine, University of Dundee, Dundee, UK
| | | | - Manuel A Flores
- TransDerm Inc., 2161 Delaware Ave, Santa Cruz, CA, 95060, USA
| | - Tycho P Speaker
- TransDerm Inc., 2161 Delaware Ave, Santa Cruz, CA, 95060, USA
| | - Faye A Rogers
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Leonard M Milstone
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher H Contag
- Molecular Imaging Program at Stanford (MIPS), E150 Clark Center, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA, 94305, USA. .,Department of Pediatrics, E150 Clark Center, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA, 94305, USA. .,Department of Radiology, E150 Clark Center, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA, 94305, USA. .,Microbiology and Immunology, E150 Clark Center, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
24
|
Abstract
Connexin mutations underlie numerous human genetic diseases. Several connexin genes have been linked to skin diseases, and mechanistic studies have indicated that a gain of abnormal channel function may be responsible for pathology. The topical accessibility of the epidermal connexins, the existence of several mouse models of human skin disease, and the ongoing identification of pharmacological inhibitors targeting connexins provide an opportunity to test new therapeutic approaches.
Collapse
Affiliation(s)
- Noah A Levit
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, United States
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
25
|
Martínez T, Jiménez AI, Pañeda C. Short-interference RNAs: becoming medicines. EXCLI JOURNAL 2015; 14:714-46. [PMID: 26648823 PMCID: PMC4669907 DOI: 10.17179/excli2015-297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/12/2015] [Indexed: 12/30/2022]
Abstract
RNA interference is a cellular mechanism by which small molecules of double stranded RNA modulate gene expression acting on the concentration and/or availability of a given messenger RNA. Almost 10 years after Fire and Mello received the Nobel Prize for the discovery of this mechanism in flat worms, RNA interference is on the edge of becoming a new class of therapeutics. With various phase III studies underway, the following years will determine whether RNAi-therapeutics can rise up to the challenge and become mainstream medicines. The present review gives a thorough overview of the current status of this technology focusing on the path to the clinic of this new class of compounds.
Collapse
Affiliation(s)
- Tamara Martínez
- Sylentis, R&D department c/Santiago Grisolía, Tres Cantos, Madrid, Spain
| | - Ana Isabel Jiménez
- Sylentis, R&D department c/Santiago Grisolía, Tres Cantos, Madrid, Spain
| | - Covadonga Pañeda
- Sylentis, R&D department c/Santiago Grisolía, Tres Cantos, Madrid, Spain
| |
Collapse
|
26
|
Jordan AR, Racine RR, Hennig MJP, Lokeshwar VB. The Role of CD44 in Disease Pathophysiology and Targeted Treatment. Front Immunol 2015; 6:182. [PMID: 25954275 PMCID: PMC4404944 DOI: 10.3389/fimmu.2015.00182] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/02/2015] [Indexed: 12/17/2022] Open
Abstract
The cell-surface glycoprotein CD44 is involved in a multitude of important physiological functions including cell proliferation, adhesion, migration, hematopoiesis, and lymphocyte activation. The diverse physiological activity of CD44 is manifested in the pathology of a number of diseases including cancer, arthritis, bacterial and viral infections, interstitial lung disease, vascular disease, and wound healing. This diversity in biological activity is conferred by both a variety of distinct CD44 isoforms generated through complex alternative splicing, posttranslational modifications (e.g., N- and O-glycosylation), interactions with a number of different ligands, and the abundance and spatial distribution of CD44 on the cell surface. The extracellular matrix glycosaminoglycan hyaluronic acid (HA) is the principle ligand of CD44. This review focuses both CD44-hyaluronan dependent and independent CD44 signaling and the role of CD44–HA interaction in various pathophysiologies. The review also discusses recent advances in novel treatment strategies that exploit the CD44–HA interaction either for direct targeting or for drug delivery.
Collapse
Affiliation(s)
- Andre R Jordan
- Sheila and David Fuente Program in Cancer Biology, University of Miami-Miller School of Medicine , Miami, FL , USA
| | - Ronny R Racine
- Department of Urology, University of Miami-Miller School of Medicine , Miami, FL , USA
| | - Martin J P Hennig
- Department of Urology, University of Miami-Miller School of Medicine , Miami, FL , USA ; Department of Urology and Uro-oncology, Hannover Medical School , Hannover , Germany
| | - Vinata B Lokeshwar
- Department of Urology, University of Miami-Miller School of Medicine , Miami, FL , USA ; Department of Cell Biology, University of Miami-Miller School of Medicine , Miami, FL , USA ; Miami Clinical Translational Institute, University of Miami-Miller School of Medicine , Miami, FL , USA
| |
Collapse
|
27
|
Hegde V, Hickerson RP, Nainamalai S, Campbell PA, Smith FJD, McLean WHI, Pedrioli DML. In vivo gene silencing following non-invasive siRNA delivery into the skin using a novel topical formulation. J Control Release 2014; 196:355-62. [PMID: 25449884 PMCID: PMC4275573 DOI: 10.1016/j.jconrel.2014.10.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/17/2022]
Abstract
Therapeutics based on short interfering RNAs (siRNAs), which act by inhibiting the expression of target transcripts, represent a novel class of potent and highly specific next-generation treatments for human skin diseases. Unfortunately, the intrinsic barrier properties of the skin combined with the large size and negative charge of siRNAs make epidermal delivery of these macromolecules quite challenging. To help evaluate the in vivo activity of these therapeutics and refine delivery strategies we generated an innovative reporter mouse model that predominantly expresses firefly luciferase (luc2p) in the paw epidermis--the region of murine epidermis that most closely models the tissue architecture of human skin. Combining this animal model with state-of-the-art live animal imaging techniques, we have developed a real-time in vivo analysis work-flow that has allowed us to compare and contrast the efficacies of a wide range nucleic acid-based gene silencing reagents in the skin of live animals. While inhibition was achieved with all of the reagents tested, only the commercially available "self-delivery" modified Accell-siRNAs (Dharmacon) produced potent and sustained in vivo gene silencing. Together, these findings highlight just how informative reliable reporter mouse models can be when assessing novel therapeutics in vivo. Using this work-flow, we developed a novel clinically-relevant topical formulation that facilitates non-invasive epidermal delivery of unmodified and "self-delivery" siRNAs. Remarkably, a sustained >40% luc2p inhibition was observed after two 1-hour treatments with Accell-siRNAs in our topical formulation. Importantly, our ability to successfully deliver siRNA molecules topically brings these novel RNAi-based therapeutics one-step closer to clinical use.
Collapse
Affiliation(s)
- Vikas Hegde
- Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Robyn P Hickerson
- Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Sitheswaran Nainamalai
- Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Paul A Campbell
- Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, University of Dundee, Dundee DD1 5EH, Scotland, UK; Carnegie Physics Laboratory, University of Dundee, Dundee DD1 4HN, Scotland, UK
| | - Frances J D Smith
- Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - W H Irwin McLean
- Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | - Deena M Leslie Pedrioli
- Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| |
Collapse
|
28
|
Haigh O, Depelsenaire AC, Meliga SC, Yukiko SR, McMillan NA, Frazer IH, Kendall MA. CXCL1 gene silencing in skin using liposome-encapsulated siRNA delivered by microprojection array. J Control Release 2014; 194:148-56. [DOI: 10.1016/j.jconrel.2014.08.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 05/09/2014] [Accepted: 08/23/2014] [Indexed: 11/26/2022]
|
29
|
Vogt A, Blume-Peytavi U. Selective hair therapy: bringing science to the fiction. Exp Dermatol 2014; 23:83-6. [PMID: 24387677 DOI: 10.1111/exd.12318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2013] [Indexed: 01/17/2023]
Abstract
Investigations on carrier-based drug delivery systems for higher selectivity in hair therapy have clearly evolved from dye release and model studies to highly sophisticated approaches, many of which specifically tackle hair indications and the delivery of hair-relevant molecules. Here, we group recent hair disease-oriented work into efforts towards (i) improved delivery of conventional drugs, (ii) delivery of novel drug classes, for example biomolecules and (iii) targeted delivery on the cellular/molecular level. Considering the solid foundation of experimental work, it does not take a large step outside the current box of thinking to follow the idea of using large carriers (>500 nm, unlikely to penetrate as a whole) for follicular penetration, retention and protection of sensitive compounds. Yet, reports on particles <200 nm being internalized by keratinocytes and dendritic cells at sites of barrier disruption (e.g., hair follicles) combined with recent advances in nanodermatology add interesting new facets to the possibilities carrier technologies could offer, for example, unprecedented levels of selectivity. The authors provide thought-provoking ideas on how smart delivery technologies and advances in our molecular understanding of hair pathophysiology could result in a whole new era of hair therapeutics. As the field still largely remains in preclinical investigation, determined efforts towards production of medical grade material and truly translational work are needed to demonstrate surplus value of carrier systems for clinical applications.
Collapse
Affiliation(s)
- Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
30
|
Deng Y, Wang CC, Choy KW, Du Q, Chen J, Wang Q, Li L, Chung TKH, Tang T. Therapeutic potentials of gene silencing by RNA interference: Principles, challenges, and new strategies. Gene 2014; 538:217-27. [DOI: 10.1016/j.gene.2013.12.019] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 11/27/2013] [Accepted: 12/11/2013] [Indexed: 12/27/2022]
|
31
|
Hickerson RP, Wey WC, Rimm DL, Speaker T, Suh S, Flores MA, Gonzalez-Gonzalez E, Leake D, Contag CH, Kaspar RL. Gene Silencing in Skin After Deposition of Self-Delivery siRNA With a Motorized Microneedle Array Device. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e129. [PMID: 24150576 PMCID: PMC4027428 DOI: 10.1038/mtna.2013.56] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/08/2013] [Indexed: 01/08/2023]
Abstract
Despite the development of potent siRNAs that effectively target genes responsible for skin disorders, translation to the clinic has been hampered by inefficient delivery through the stratum corneum barrier and into the live cells of the epidermis. Although hypodermic needles can be used to transport siRNA through the stratum corneum, this approach is limited by pain caused by the injection and the small volume of tissue that can be accessed by each injection. The use of microneedle arrays is a less painful method for siRNA delivery, but restricted payload capacity limits this approach to highly potent molecules. To address these challenges, a commercially available motorized microneedle array skin delivery device was evaluated. This device combines the positive elements of both hypodermic needles and microneedle array technologies with little or no pain to the patient. Application of fluorescently tagged self-delivery (sd)-siRNA to both human and murine skin resulted in distribution throughout the treated skin. In addition, efficient silencing (78% average reduction) of reporter gene expression was achieved in a transgenic fluorescent reporter mouse skin model. These results indicate that this device effectively delivers functional sd-siRNA with an efficiency that predicts successful clinical translation.
Collapse
Affiliation(s)
- Robyn P Hickerson
- 1] TransDerm, Santa Cruz, California, USA [2] Current address: University of Dundee, Dundee, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Martínez T, Wright N, López-Fraga M, Jiménez AI, Pañeda C. Silencing human genetic diseases with oligonucleotide-based therapies. Hum Genet 2013; 132:481-93. [PMID: 23494242 DOI: 10.1007/s00439-013-1288-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/05/2013] [Indexed: 12/11/2022]
Abstract
RNA interference is an endogenous mechanism present in most eukaryotic cells that enables degradation of specific mRNAs. Pharmacological exploitation of this mechanism for therapeutic purposes attracted a whole amount of attention in its initial years, but was later hampered due to difficulties in delivery of the pharmacological agents to the appropriate organ or tissue. Advances in recent years have to a certain level started to address this specific issue. Genetic diseases are caused by aberrations in gene sequences or structure; these particular abnormalities are in theory easily addressable by RNAi therapeutics. Sequencing of the human genome has largely contributed to the identification of alterations responsible for genetic conditions, thus facilitating the design of compounds that can address these diseases. This review addresses the currently on-going programs with the aim of developing RNAi and other antisense compounds for the treatment of genetic conditions and the pros and cons that these products may encounter along the way. The authors have focused on those programs that have reached clinical trials or are very close to do so.
Collapse
Affiliation(s)
- Tamara Martínez
- Sylentis, PCM C/Santiago Grisolía no 2, Tres Cantos, 28760, Madrid, Spain
| | | | | | | | | |
Collapse
|
33
|
Chong RHE, Gonzalez-Gonzalez E, Lara MF, Speaker TJ, Contag CH, Kaspar RL, Coulman SA, Hargest R, Birchall JC. Gene silencing following siRNA delivery to skin via coated steel microneedles: In vitro and in vivo proof-of-concept. J Control Release 2013; 166:211-9. [PMID: 23313112 DOI: 10.1016/j.jconrel.2012.12.030] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/24/2012] [Accepted: 12/30/2012] [Indexed: 11/28/2022]
Abstract
The development of siRNA-based gene silencing therapies has significant potential for effectively treating debilitating genetic, hyper-proliferative or malignant skin conditions caused by aberrant gene expression. To be efficacious and widely accepted by physicians and patients, therapeutic siRNAs must access the viable skin layers in a stable and functional form, preferably without painful administration. In this study we explore the use of minimally-invasive steel microneedle devices to effectively deliver siRNA into skin. A simple, yet precise microneedle coating method permitted reproducible loading of siRNA onto individual microneedles. Following recovery from the microneedle surface, lamin A/C siRNA retained full activity, as demonstrated by significant reduction in lamin A/C mRNA levels and reduced lamin A/C protein in HaCaT keratinocyte cells. However, lamin A/C siRNA pre-complexed with a commercial lipid-based transfection reagent (siRNA lipoplex) was less functional following microneedle coating. As Accell-modified "self-delivery" siRNA targeted against CD44 also retained functionality after microneedle coating, this form of siRNA was used in subsequent in vivo studies, where gene silencing was determined in a transgenic reporter mouse skin model. Self-delivery siRNA targeting the reporter (luciferase/GFP) gene was coated onto microneedles and delivered to mouse footpad. Quantification of reporter mRNA and intravital imaging of reporter expression in the outer skin layers confirmed functional in vivo gene silencing following microneedle delivery of siRNA. The use of coated metal microneedles represents a new, simple, minimally-invasive, patient-friendly and potentially self-administrable method for the delivery of therapeutic nucleic acids to the skin.
Collapse
Affiliation(s)
- Rosalind H E Chong
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Singhania R, Khairuddin N, Clarke D, McMillan NA. RNA interference for the treatment of papillomavirus disease. Open Virol J 2012; 6:204-15. [PMID: 23341856 PMCID: PMC3547394 DOI: 10.2174/1874357901206010204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/10/2012] [Accepted: 08/15/2012] [Indexed: 02/06/2023] Open
Abstract
Human Papillomavirus (HPV)-induced diseases are a significant burden on our healthcare system and current therapies are not curative. Vaccination provides significant prophylactic protection but effective therapeutic treatments will still be required. RNA interference (RNAi) has great promise in providing highly specific therapies for all HPV diseases yet this promise has not been realised. Here we review the research into RNAi therapy for HPV in vitro and in vivo and examine the various targets and outcomes. We discuss the idea of using RNAi with current treatments and address delivery of RNAi, the major issue holding back clinical adoption. Finally, we present our view of a potential path to the clinic.
Collapse
Affiliation(s)
- Richa Singhania
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | | | | | | |
Collapse
|
35
|
Snead NM, Rossi JJ. RNA interference trigger variants: getting the most out of RNA for RNA interference-based therapeutics. Nucleic Acid Ther 2012; 22:139-46. [PMID: 22703279 DOI: 10.1089/nat.2012.0361] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The manifestation of RNA interference (RNAi)-based therapeutics lies in safe and successful delivery of small interfering RNAs (siRNAs), the molecular entity that triggers and guides sequence-specific degradation of target mRNAs. Optimizing the chemistry and structure of siRNAs to achieve maximum efficacy is an important parameter in the development of siRNA therapeutics. The RNAi protein machinery can tolerate a variety of non-canonical modifications made to siRNAs, each of which imparts advantageous properties. Here, we review these modifications to siRNAs in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Nicholas M Snead
- Department of Molecular and Cellular Biology and Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope, Duarte, California 91010, USA
| | | |
Collapse
|