1
|
Liu Y, Wang C, Chen G, Chen J, Chen W, Lei K, Li J, Pan Y, Li Y, Tang D, Li B, Zhao J, Zeng L. Patient derived cancer organoids model the response to HER2-CD3 bispecific antibody (BsAbHER2) generated from hydroxyapatite gene delivery system. Cancer Lett 2024; 597:217043. [PMID: 38876386 DOI: 10.1016/j.canlet.2024.217043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
HER2-positive cancer is a prevalent subtype of malignancy with poor prognosis, yet current targeted therapies, like Trastuzumab and pyrotinib, have resulted in remission in patients with HER2-positive cancer. This study provides a novel approach for immunotherapy based on a hydroxyapatite (HA) gene delivery system producing a bispecific antibody for HER2-positive cancer treatment. An HA nanocarrier has been synthesized by the classical hydrothermal method. Particularly, the HA-nanoneedle system was able to mediate stable gene expression of minicircle DNA (MC) encoding a humanized anti-CD3/anti-HER2 bispecific antibody (BsAbHER2) in vivo. The produced BsAbs exhibited a potent killing effect not only in HER2-positive cancer cells but also in patient-derived organoids in vitro. This HA-nanoneedle gene delivery system features simple large-scale preparation and clinical applicability. Hence, the HA-nanoneedle gene delivery system combined with minicircle DNA vector encoding BsAbHER2 reported here provides a potential immunotherapy strategy for HER2-positive tumors.
Collapse
Affiliation(s)
- Yuhong Liu
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China; The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Chen Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Guochuang Chen
- Syno Minicircle Biotechnology, Shenzhen, 518055, PR China
| | - Junzong Chen
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Wei Chen
- The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Kefeng Lei
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Jia Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Yihang Pan
- The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - You Li
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Di Tang
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China.
| | - Binbin Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China.
| | - Jing Zhao
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China.
| | - Leli Zeng
- The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China.
| |
Collapse
|
2
|
Seyed N, Taheri T, Rafati S. Live attenuated-nonpathogenic Leishmania and DNA structures as promising vaccine platforms against leishmaniasis: innovations can make waves. Front Microbiol 2024; 15:1326369. [PMID: 38633699 PMCID: PMC11021776 DOI: 10.3389/fmicb.2024.1326369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Leishmaniasis is a vector-borne disease caused by the protozoan parasite of Leishmania genus and is a complex disease affecting mostly tropical regions of the world. Unfortunately, despite the extensive effort made, there is no vaccine available for human use. Undoubtedly, a comprehensive understanding of the host-vector-parasite interaction is substantial for developing an effective prophylactic vaccine. Recently the role of sandfly saliva on disease progression has been uncovered which can make a substantial contribution in vaccine design. In this review we try to focus on the strategies that most probably meet the prerequisites of vaccine development (based on the current understandings) including live attenuated/non-pathogenic and subunit DNA vaccines. Innovative approaches such as reverse genetics, CRISP/R-Cas9 and antibiotic-free selection are now available to promisingly compensate for intrinsic drawbacks associated with these platforms. Our main goal is to call more attention toward the prerequisites of effective vaccine development while controlling the disease outspread is a substantial need.
Collapse
Affiliation(s)
- Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
3
|
Suda T, Yokoo T, Kanefuji T, Kamimura K, Zhang G, Liu D. Hydrodynamic Delivery: Characteristics, Applications, and Technological Advances. Pharmaceutics 2023; 15:pharmaceutics15041111. [PMID: 37111597 PMCID: PMC10141091 DOI: 10.3390/pharmaceutics15041111] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
The principle of hydrodynamic delivery was initially used to develop a method for the delivery of plasmids into mouse hepatocytes through tail vein injection and has been expanded for use in the delivery of various biologically active materials to cells in various organs in a variety of animal species through systemic or local injection, resulting in significant advances in new applications and technological development. The development of regional hydrodynamic delivery directly supports successful gene delivery in large animals, including humans. This review summarizes the fundamentals of hydrodynamic delivery and the progress that has been made in its application. Recent progress in this field offers tantalizing prospects for the development of a new generation of technologies for broader application of hydrodynamic delivery.
Collapse
|
4
|
Tan Y, Cai J, Wang Z. Epsilon-caprolactone-modified polyethylenimine as a genetic vehicle for stem cell-based bispecific antibody and exosome synergistic therapy. Regen Biomater 2022; 10:rbac090. [PMID: 36683744 PMCID: PMC9847525 DOI: 10.1093/rb/rbac090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2022] Open
Abstract
Bispecific antibodies (BsAb) have gained significant momentum in clinical application. However, the rapid enzymolysis and metabolism of protein drugs usually induce short circulation in vivo, and developing an efficient protein delivery system still is a bottleneck. Mesenchymal stem cells (MSCs) have become an attractive therapeutic carrier for cancers. Genetic modification enables MSCs to express and secrete specific proteins, which is essential for therapeutic efficacy. However, efficient gene transfer into MSCs is still a challenge. In this study, we applied epsilon-caprolactone-modified polyethylenimine (PEI-CL) as an efficacy carrier for plasmid transfection into MSC that served as in situ 'cell factory' for anti-CD3/CD20 BsAb preparation. Herein, the PEI-CL encapsulates the minicircle plasmid and mediates cell transfection efficiently. Thus, the anti-CD3/CD20 BsAb is secreted from MSC and recruited T cell, resulting in highly sensitive cytotoxicity in the human B-cell lymphoma. Furthermore, these stem cells produce exosomes bearing MiR-15a/MiR-16, which could negatively regulate cancer's oncogenes BCL-2 for adjuvant therapy. Meanwhile, high immunologic factors like tumor necrosis factor-α and interferon-γ are generated and enhance immunotherapy efficacy. The engineered MSCs are demonstrated as an efficient route for BsAb production, and these bioactive components contribute to synergistic therapy, which would be an innovative treatment.
Collapse
Affiliation(s)
- Yan Tan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jiali Cai
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Center for Functional Biomaterials, Sun Yat-Sen University, Guangzhou 510275, China
| | | |
Collapse
|
5
|
Xu G, Luo Y, Wang H, Wang Y, Liu B, Wei J. Therapeutic bispecific antibodies against intracellular tumor antigens. Cancer Lett 2022; 538:215699. [PMID: 35487312 DOI: 10.1016/j.canlet.2022.215699] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/16/2022]
Abstract
Bispecific antibodies (BsAbs)-based therapeutics have been identified to be one of the most promising immunotherapy strategies. However, their target repertoire is mainly restricted to cell surface antigens rather than intracellular antigens, resulting in a relatively limited scope of applications. Intracellular tumor antigens are identified to account for a large proportion of tumor antigen profiles. Recently, bsAbs that target intracellular oncoproteins have raised much attention, broadening the targeting scope of tumor antigens and improving the efficacy of traditional antibody-based therapeutics. Consequently, this review will focus on this emerging field and discuss related research advances. We introduce the classification, characteristics, and clinical applications of bsAbs, the theoretical basis for targeting intracellular antigens, delivery systems of bsAbs, and the latest preclinical and clinical advances of bsAbs targeting several intracellular oncotargets, including those of cancer-testis antigens, differentiation antigens, neoantigens, and other antigens. Moreover, we summarize the limitations of current bsAbs, and propose several potential strategies against immune escape and T cell exhaustion as well as some future perspectives.
Collapse
Affiliation(s)
- Guanghui Xu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Yuting Luo
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Hanbing Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Yue Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
6
|
Pang X, Chen G, Huang P, Zhang P, Liu J, Hou X, He CY, Chen P, Xie YW, Zhao J, Chen ZY. Anticancer effects of a single intramuscular dose of a minicircle DNA vector expressing anti-CD3/CD20 in a xenograft mouse model. Mol Ther Oncolytics 2022; 24:788-798. [PMID: 35317514 PMCID: PMC8908050 DOI: 10.1016/j.omto.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Bispecific antibodies (BsAbs) are a class of promising anticancer immunotherapies. Among them, the US Food and Drug Administration (FDA)-approved blinatumomab (BLI) is very effective in eliminating the minimum residual disease (MRD) of acute lymphoblastic leukemia (ALL), resulting in long-term remission in many individuals. However, the need for months-long intravenous delivery and high cost limit its clinical acceptance. Here we demonstrate that these problems can be solved by a BsAb expressed by one intramuscular (i.m.) dose of a minicircle DNA vector (MC). In a human B lymphoma xenograft mouse model, when microcancers became detectable in bone marrow, the mice received an i.m. dose of the MC encoding the BsAb anti-CD3/CD20 (BsAb.CD20), followed by 8 subsequent intravenous (i.v.) doses, one every other day (q2d), of human T cells to serve as effectors. The treatment resulted in persistent expression of a therapeutic level of serum BsAb.CD20 and complete regression or growth retardation of the cancers in the mice. These results suggest that the i.m. MC technology can eliminate the physical and financial burdens of i.v. delivered BLI without compromising anticancer efficacy and that cancer can be treated as easily as injecting a vaccine. This, together with other superior MC features, such as safety and affordability, suggests that the i.m. MC BsAb technology has great clinical application potential.
Collapse
Affiliation(s)
- Xiaojuan Pang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Syno Minicircle Biotechnology Co., Ltd., Shenzhen 518055, China
| | - Guochuang Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Syno Minicircle Biotechnology Co., Ltd., Shenzhen 518055, China
| | - Ping Huang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peifa Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Syno Minicircle Biotechnology Co., Ltd., Shenzhen 518055, China
| | - Jie Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Syno Minicircle Biotechnology Co., Ltd., Shenzhen 518055, China
| | - Xiaohu Hou
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Syno Minicircle Biotechnology Co., Ltd., Shenzhen 518055, China
| | - Cheng-Yi He
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Syno Minicircle Biotechnology Co., Ltd., Shenzhen 518055, China
| | - Ping Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Syno Minicircle Biotechnology Co., Ltd., Shenzhen 518055, China
| | - Yi-Wu Xie
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Syno Minicircle Biotechnology Co., Ltd., Shenzhen 518055, China
| | - Jing Zhao
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Syno Minicircle Biotechnology Co., Ltd., Shenzhen 518055, China
| | - Zhi-Ying Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Syno Minicircle Biotechnology Co., Ltd., Shenzhen 518055, China
- Corresponding author Zhi-Ying Chen, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Boulevard, Shenzhen 518055, China.
| |
Collapse
|
7
|
Blanco B, Domínguez-Alonso C, Alvarez-Vallina L. Bispecific Immunomodulatory Antibodies for Cancer Immunotherapy. Clin Cancer Res 2021; 27:5457-5464. [PMID: 34108185 PMCID: PMC9306338 DOI: 10.1158/1078-0432.ccr-20-3770] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/25/2021] [Accepted: 05/21/2021] [Indexed: 01/07/2023]
Abstract
The recent advances in the field of immuno-oncology have dramatically changed the therapeutic strategy against advanced malignancies. Bispecific antibody-based immunotherapies have gained momentum in preclinical and clinical investigations following the regulatory approval of the T cell-redirecting antibody blinatumomab. In this review, we focus on emerging and novel mechanisms of action of bispecific antibodies interacting with immune cells with at least one of their arms to regulate the activity of the immune system by redirecting and/or reactivating effector cells toward tumor cells. These molecules, here referred to as bispecific immunomodulatory antibodies, have the potential to improve clinical efficacy and safety profile and are envisioned as a second wave of cancer immunotherapies. Currently, there are more than 50 bispecific antibodies under clinical development for a range of indications, with promising signs of therapeutic activity. We also discuss two approaches for in vivo secretion, direct gene delivery, and infusion of ex vivo gene-modified cells, which may become instrumental for the clinical application of next-generation bispecific immunomodulatory antibodies.
Collapse
Affiliation(s)
- Belén Blanco
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Carmen Domínguez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Luis Alvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain.,Corresponding Author: Luis Alvarez-Vallina, Cancer Immunotherapy Unit, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain. E-mail:
| |
Collapse
|
8
|
Blanco B, Ramírez-Fernández Á, Alvarez-Vallina L. Engineering Immune Cells for in vivo Secretion of Tumor-Specific T Cell-Redirecting Bispecific Antibodies. Front Immunol 2020; 11:1792. [PMID: 32903593 PMCID: PMC7438551 DOI: 10.3389/fimmu.2020.01792] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapeutic approaches based on the redirection of T cell activity toward tumor cells are actively being investigated. The impressive clinical success of the continuously intravenously infused T cell-redirecting bispecific antibody (T-bsAb) blinatumomab (anti-CD19 x anti-CD3), and of engineered T cells expressing anti-CD19 chimeric antigen receptors (CAR-T cells) in hematological malignancies, has led to renewed interest in a novel cancer immunotherapy strategy that combines features of antibody- and cell-based therapies. This emerging approach is based on the endogenous secretion of T-bsAbs by engineered T cells (STAb-T cells). Adoptive transfer of genetically modified STAb-T cells has demonstrated potent anti-tumor activity in both solid tumor and hematologic preclinical xenograft models. We review here the potential benefits of the STAb-T strategy over similar approaches currently being used in clinic, and we discuss the potential combination of this promising strategy with the well-established CAR-T cell approach.
Collapse
Affiliation(s)
- Belén Blanco
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Ángel Ramírez-Fernández
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Luis Alvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| |
Collapse
|
9
|
Zhao J, Chen G, Pang X, Zhang P, Hou X, Chen P, Xie YW, He CY, Wang Z, Chen ZY. Calcium phosphate nanoneedle based gene delivery system for cancer genetic immunotherapy. Biomaterials 2020; 250:120072. [PMID: 32361307 DOI: 10.1016/j.biomaterials.2020.120072] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023]
Abstract
Ovarian cancer has become one of the most common gynecological cancers with a high mortality. However, conventional surgery together with combination chemotherapy is difficult to achieve ideal therapeutic effect. Although genetic immunotherapy is applied to active immune responses against cancer, the absence of efficient in vivo gene delivery technique is still an obstacle in clinical application. To overcome these problems, a minicircle DNA vector encoding humanized anti-EpCAM/CD3 bispecific antibody (BsAbEPH) has been constructed. Moreover, different shapes of calcium phosphate (CaPO) biomaterials were prepared. Specifically, the CaPO-nanoneedle-mediated "cell perforation" transfection technology achieves high levels of gene expression in peritoneal cavity. In an intraperitoneal xenograft model with human ovarian cancer cell line SKOV3, the CaPO-nanoneedle/minicircle DNA system expressed BsAbEPH resulted in significant retardation of cancer growth and extension of mouse life-span with limited toxicity. And this system can be made as off-the-shelf and easy-to-use products. Therefore, CaPO-nanoneedle based non-viral gene delivery technology will have great potential in clinical application.
Collapse
Affiliation(s)
- Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 18107, PR China; Laboratory for Gene and Cell Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Guochuang Chen
- Laboratory for Gene and Cell Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Syno Minicircle Biotechnology Co. Ltd., Shenzhen, 518055, PR China
| | - Xiaojuan Pang
- Laboratory for Gene and Cell Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Syno Minicircle Biotechnology Co. Ltd., Shenzhen, 518055, PR China
| | - Peifa Zhang
- Syno Minicircle Biotechnology Co. Ltd., Shenzhen, 518055, PR China
| | - Xiaohu Hou
- Laboratory for Gene and Cell Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Syno Minicircle Biotechnology Co. Ltd., Shenzhen, 518055, PR China
| | - Ping Chen
- Laboratory for Gene and Cell Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Syno Minicircle Biotechnology Co. Ltd., Shenzhen, 518055, PR China
| | - Yi-Wu Xie
- Syno Minicircle Biotechnology Co. Ltd., Shenzhen, 518055, PR China
| | - Cheng-Yi He
- Laboratory for Gene and Cell Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Syno Minicircle Biotechnology Co. Ltd., Shenzhen, 518055, PR China
| | - Zhiyong Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 18107, PR China; School of Materials Science and Engineering, Center for Functional Biomaterials, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Zhi-Ying Chen
- Laboratory for Gene and Cell Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Syno Minicircle Biotechnology Co. Ltd., Shenzhen, 518055, PR China.
| |
Collapse
|
10
|
Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics. Cell Mol Immunol 2020; 17:451-461. [PMID: 32313210 DOI: 10.1038/s41423-020-0417-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Bispecific antibodies (bsAbs) refer to a large family of molecules that recognize two different epitopes or antigens. Although a series of challenges, especially immunogenicity and chain mispairing issues, once hindered the development of bsAbs, they have been gradually overcome with the help of rapidly developing technologies in the past 5 decades. In the meantime, an increasing number of bsAb platforms have been designed to satisfy different clinical demands. Currently, numerous preclinical and clinical trials are underway, portraying a promising future for bsAb-based cancer treatment. Nevertheless, bsAb drugs still face enormous challenges in their application as cancer therapeutics, including tumor heterogeneity and mutational burden, intractable tumor microenvironment (TME), insufficient costimulatory signals to activate T cells, the necessity for continuous injection, fatal systemic side effects, and off-target toxicities to adjacent normal cells. Therefore, we provide several strategies as solutions to these issues, which comprise generating multispecific bsAbs, discovering neoantigens, combining bsAbs with other anticancer therapies, exploiting natural killer (NK)-cell-based bsAbs and producing bsAbs in situ. In this review, we mainly discuss previous and current challenges in bsAb development and underscore corresponding strategies, with a brief introduction of several typical bsAb formats.
Collapse
|
11
|
Fallah A, Estiri H, Parrish E, Soleimani M, Zeinali S, Zadeh-Vakili A. Biosimilar Gene Therapy: Investigational Assessment of Secukinumab Gene Therapy. CELL JOURNAL 2019; 21:433-443. [PMID: 31376325 PMCID: PMC6722441 DOI: 10.22074/cellj.2020.6309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 12/09/2018] [Indexed: 11/20/2022]
Abstract
Objective Tumor necrosis factor-alpha (TNF-α), checkpoint inhibitors, and interleukin-17 (IL-17) are critical targets in
inflammation and autoimmune diseases. Monoclonal antibodies (mAbs) have a successful portfolio in the treatment of chronic
diseases. With the current progress in stem cells and gene therapy technologies, there is the promise of replacing costly mAbs
production in bioreactors with a more direct and cost-effective production method inside the patient’s cells. In this paper we
examine the results of an investigational assessment of secukinumab gene therapy.
Materials and Methods In this experimental study, the DNA sequence of the heavy and light chains of secukinumab
antibodies were cloned in a lentiviral vector. Human chorionic villous mesenchymal stem cells (CMSCs) were isolated and
characterized. After lentiviral packaging and titration, part of the recombinant viruses was used for transduction of the CMSCs
and the other part were applied for systemic gene therapy. The engineered stem cells and recombinant viruses were applied
for ex vivo and in vivo gene therapy, respectively, in different groups of rat models. In vitro and in vivo secukinumab expression
was confirmed with quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and ELISA by considering the
approved secukinumab as the standard reference.
Results Cell differentiation assays and flow cytometry of standard biomarkers confirmed the multipotency of the
CMSCs. Western blot and qRT-PCR confirmed in vitro gene expression of secukinumab at both the mRNA and protein
level. ELISA testing of serum from treated rat models confirmed mAb overexpression for both in vivo and ex vivo gene
therapies.
Conclusion In this study, a lentiviral-mediated ex vivo and in vivo gene therapy was developed to provide a moderate dose
of secukinumab in rat models. Biosimilar gene therapy is an attractive approach for the treatment of autoimmune disorders,
cancers and other chronic diseases.
Collapse
Affiliation(s)
- Ali Fallah
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,RNAx Ltd., London, UK
| | | | | | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sirous Zeinali
- Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran.Electronic Address:
| | - Azita Zadeh-Vakili
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.Electronic Address:
| |
Collapse
|
12
|
A Novel Cre Recombinase-Mediated In Vivo Minicircle DNA (CRIM) Vaccine Provides Partial Protection against Newcastle Disease Virus. Appl Environ Microbiol 2019; 85:AEM.00407-19. [PMID: 31053588 DOI: 10.1128/aem.00407-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Minicircle DNA (mcDNA), which contains only the necessary components for eukaryotic expression and is thus smaller than traditional plasmids, has been designed for application in genetic manipulation. In this study, we constructed a novel plasmid containing both the Cre recombinase under the phosphoglycerate kinase (PGK) promoter and recombinant lox66 and lox71 sites located outside the cytomegalovirus (CMV) expression cassette. The strictly controlled synthesis of Cre recombinase in vivo maintained the complete form of the plasmid in vitro, whereas the in vivo production of Cre transformed the parental plasmid to mcDNA after transfection. The newly designed Cre recombinase-mediated in vivo mcDNA platform, named CRIM, significantly increased the nuclear entry of mcDNA, followed by increased production of mRNA and protein, using enhanced green fluorescent protein (EGFP) as a model. Similar results were also observed in chickens when the vaccine was delivered by the regulated-delayed-lysis Salmonella strain χ11218, where significantly increased production of EGFP was observed in chicken livers. Then, we used the HN gene of genotype VII Newcastle disease virus as an antigen model to construct the traditional plasmid pYL43 and the novel mcDNA plasmid pYL47. After immunization, our CRIM vaccine provided significantly increased protection against challenge compared with that of the traditional plasmid, providing us with a novel mcDNA vaccine platform.IMPORTANCE Minicircle DNA (mcDNA) has been considered an attractive alternative to DNA vaccines; however, the relatively high cost and complicated process of purifying mcDNA dramatically restricts the application of mcDNA in the veterinary field. We designed a novel in vivo mcDNA platform in which the complete plasmid could spontaneously transform into mcDNA in vivo In combination with the regulated-delayed-lysis Salmonella strain, the newly designed mcDNA vaccine provides us with an elegant platform for veterinary vaccine development.
Collapse
|
13
|
Blanco B, Compte M, Lykkemark S, Sanz L, Alvarez-Vallina L. T Cell-Redirecting Strategies to ‘STAb’ Tumors: Beyond CARs and Bispecific Antibodies. Trends Immunol 2019; 40:243-257. [DOI: 10.1016/j.it.2019.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/14/2022]
|
14
|
Hickey JW, Kosmides AK, Schneck JP. Engineering Platforms for T Cell Modulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:277-362. [PMID: 30262034 DOI: 10.1016/bs.ircmb.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T cells are crucial contributors to mounting an effective immune response and increasingly the focus of therapeutic interventions in cancer, infectious disease, and autoimmunity. Translation of current T cell immunotherapies has been hindered by off-target toxicities, limited efficacy, biological variability, and high costs. As T cell therapeutics continue to develop, the application of engineering concepts to control their delivery and presentation will be critical for their success. Here, we outline the engineer's toolbox and contextualize it with the biology of T cells. We focus on the design principles of T cell modulation platforms regarding size, shape, material, and ligand choice. Furthermore, we review how application of these design principles has already impacted T cell immunotherapies and our understanding of T cell biology. Recent, salient examples from protein engineering, synthetic particles, cellular and genetic engineering, and scaffolds and surfaces are provided to reinforce the importance of design considerations. Our aim is to provide a guide for immunologists, engineers, clinicians, and the pharmaceutical sector for the design of T cell-targeting platforms.
Collapse
Affiliation(s)
- John W Hickey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alyssa K Kosmides
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonathan P Schneck
- Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
15
|
Wang X, Kawabe Y, Hada T, Ito A, Kamihira M. Cre-Mediated Transgene Integration in Chinese Hamster Ovary Cells Using Minicircle DNA Vectors. Biotechnol J 2018; 13:e1800063. [DOI: 10.1002/biot.201800063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/26/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Xue Wang
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University; 744 Motooka Nishi-ku, 819-0395 Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University; 744 Motooka Nishi-ku, 819-0395 Japan
| | - Takeshi Hada
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University; 744 Motooka Nishi-ku, 819-0395 Japan
| | - Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University; 744 Motooka Nishi-ku, 819-0395 Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University; 744 Motooka Nishi-ku, 819-0395 Japan
| |
Collapse
|
16
|
Viardot A, Bargou R. Bispecific antibodies in haematological malignancies. Cancer Treat Rev 2018; 65:87-95. [PMID: 29635163 DOI: 10.1016/j.ctrv.2018.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022]
Abstract
Bispecific antibodies (bsAbs) combine the binding sites of two monoclonal antibodies in one molecule. The close proximity of a tumor specific antigen and an effector cell antigen results in a targeted activation of effector cells. The mechanism is similar to the chimeric antigen receptor (CAR) T-cells, recently approved in two haematologic cancers. CAR T-cells and bsAb represent the most powerful tools for major-histocompatibility complex (MHC) independent T-cell immune response against cancer. In contrast to CAR T-cells, bsAbs are "off the shelf" drugs. As a drawback, the efficacy is dependent on a prolonged application. More than 40 years of intensive research generate a plethora of bispecific constructs with a remarkable difference in manufacturability, stability, half-life time and receptor affinity. Blinatumomab was the first approved bsAb in relapsed and refractory acute lymphoblastic leukemia. By the mature experience of blinatumomab in more than 10 clinical trials over more than one decade, we learned some lessons on how to use this new principle. The efficacy is higher in patients with less tumor burden, suggesting the use as consolidation more than for initial debulking. Main resistance mechanisms are extramedullary relapses and the expression of the inhibitory PD-L1 molecule, suggesting the value of combination with checkpoint inhibitors. CD19 loss is infrequent after blinatumomab, preserving the option for alternative CD19-direct treatments. New bsAbs in lymphoma, myeloma and acute myeloid leukemia enter phase-I trials, together with many new constructs in solid cancer.
Collapse
Affiliation(s)
- Andreas Viardot
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany.
| | - Ralf Bargou
- Comprehensive Cancer Center Mainfranken, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Sedykh SE, Prinz VV, Buneva VN, Nevinsky GA. Bispecific antibodies: design, therapy, perspectives. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:195-208. [PMID: 29403265 PMCID: PMC5784585 DOI: 10.2147/dddt.s151282] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibodies (Abs) containing two different antigen-binding sites in one molecule are called bispecific. Bispecific Abs (BsAbs) were first described in the 1960s, the first monoclonal BsAbs were generated in the 1980s by hybridoma technology, and the first article describing the therapeutic use of BsAbs was published in 1992, but the number of papers devoted to BsAbs has increased significantly in the last 10 years. Particular interest in BsAbs is due to their therapeutic use. In the last decade, two BsAbs - catumaxomab in 2009 and blinatumomab in 2014, were approved for therapeutic use. Papers published in recent years have been devoted to various methods of BsAb generation by genetic engineering and chemical conjugation, and describe preclinical and clinical trials of these drugs in a variety of diseases. This review considers diverse BsAb-production methods, describes features of therapeutic BsAbs approved for medical use, and summarizes the prospects of practical application of promising new BsAbs.
Collapse
Affiliation(s)
- Sergey E Sedykh
- Laboratory of Repair Enzymes, Siberian Branch of Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, Novosibirsk State University, Novosibirsk, Russia
| | - Victor V Prinz
- Laboratory of Repair Enzymes, Siberian Branch of Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, Novosibirsk State University, Novosibirsk, Russia
| | - Valentina N Buneva
- Laboratory of Repair Enzymes, Siberian Branch of Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, Novosibirsk State University, Novosibirsk, Russia
| | - Georgy A Nevinsky
- Laboratory of Repair Enzymes, Siberian Branch of Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
18
|
Velasquez MP, Bonifant CL, Gottschalk S. Redirecting T cells to hematological malignancies with bispecific antibodies. Blood 2018; 131:30-38. [PMID: 29118005 PMCID: PMC5755042 DOI: 10.1182/blood-2017-06-741058] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/30/2017] [Indexed: 12/13/2022] Open
Abstract
There is a need to improve outcomes for patients with recurrent and/or refractory hematological malignancies. Immunotherapy holds the promise to meet this need, because it does not rely on the cytotoxic mechanism of conventional therapies. Among different forms of immunotherapy, redirecting T cells to hematological malignancies with bispecific antibodies (BsAbs) is an attractive strategy. BsAbs are an "off-the-shelf" product that is easily scalable in contrast to adoptive T-cell therapies. Among these, the bispecific T-cell engager blinatumomab has emerged as the most successful BsAb to date. It consists of 2 single-chain variable fragments specific for CD19 present on B-cell malignancies and CD3 expressed on almost all T cells. Blinatumomab has shown potent antitumor activity as a single agent, particularly for acute lymphoblastic leukemia, resulting in its US Food and Drug Administration approval. However, although successful in inducing remissions, these are normally short-lived, with median response durations of <1 year. Nevertheless, the success of blinatumomab has reinvigorated the BsAb field, which is bustling with preclinical and clinical studies for not only B-cell-derived lymphoblastic leukemia and lymphoma but also acute myeloid leukemia and multiple myeloma. Here, we will review the successes and challenges of T-cell-targeted BsAbs for the immunotherapy of hematological malignancies with special focus on conducted clinical studies and strategies to improve their efficacy.
Collapse
Affiliation(s)
- Mireya Paulina Velasquez
- Department of Bone Marrow Transplant and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN; and
| | - Challice L Bonifant
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI
| | - Stephen Gottschalk
- Department of Bone Marrow Transplant and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN; and
| |
Collapse
|
19
|
Chen P, Liu Y, Zhao J, Pang X, Zhang P, Hou X, Chen P, He CY, Wang Z, Chen ZY. The synthesis of amphiphilic polyethyleneimine/calcium phosphate composites for bispecific T-cell engager based immunogene therapy. Biomater Sci 2018; 6:633-641. [DOI: 10.1039/c7bm01143a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bispecific T-cell engagers (BiTEs) are single chain variable fragments, which could connect the surface antigen on cancer cells and CD3 ligands on T cells, and then engage the T cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Pingzhang Chen
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
- Shenzhen College of Advanced Technology
- University of Chinese Academy of Sciences
| | - Yunhong Liu
- Department of Clinical Laboratory
- The People's Hospital of Longhua
- Shenzhen
- China
| | - Jing Zhao
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | | | - Peifa Zhang
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Xiaohu Hou
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Ping Chen
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Cheng-yi He
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Zhiyong Wang
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
- School of Materials Science and Engineering
- Sun Yat-sen University
| | - Zhi-ying Chen
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
- Shenzhen College of Advanced Technology
- University of Chinese Academy of Sciences
| |
Collapse
|
20
|
Kruse RL, Shum T, Legras X, Barzi M, Pankowicz FP, Gottschalk S, Bissig KD. In Situ Liver Expression of HBsAg/CD3-Bispecific Antibodies for HBV Immunotherapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:32-41. [PMID: 29018834 PMCID: PMC5626922 DOI: 10.1016/j.omtm.2017.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023]
Abstract
Current therapies against hepatitis B virus (HBV) do not reliably cure chronic infection, necessitating new therapeutic approaches. The T cell response can clear HBV during acute infection, and the adoptive transfer of antiviral T cells during bone marrow transplantation can cure patients of chronic HBV infection. To redirect T cells to HBV-infected hepatocytes, we delivered plasmids encoding bispecific antibodies directed against the viral surface antigen (HBsAg) and CD3, expressed on almost all T cells, directly into the liver using hydrodynamic tail vein injection. We found a significant reduction in HBV-driven reporter gene expression (184-fold) in a mouse model of acute infection, which was 30-fold lower than an antibody only recognizing HBsAg. While bispecific antibodies triggered, in part, antigen-independent T cell activation, antibody production within hepatocytes was non-cytotoxic. We next tested the bispecific antibodies in a different HBV mouse model, which closely mimics the transcriptional template for HBV, covalently closed circular DNA (cccDNA). We found that the antiviral effect was noncytopathic, mediating a 495-fold reduction in HBsAg levels at day 4. At day 33, bispecific antibody-treated mice exhibited 35-fold higher host HBsAg immunoglobulin G (IgG) antibody production versus untreated groups. Thus, gene therapy with HBsAg/CD3-bispecific antibodies represents a promising therapeutic strategy for patients with HBV.
Collapse
Affiliation(s)
- Robert L Kruse
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas Shum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.,Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xavier Legras
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mercedes Barzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Frank P Pankowicz
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.,Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA.,Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karl-Dimiter Bissig
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
21
|
Hollevoet K, Declerck PJ. State of play and clinical prospects of antibody gene transfer. J Transl Med 2017; 15:131. [PMID: 28592330 PMCID: PMC5463339 DOI: 10.1186/s12967-017-1234-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
Recombinant monoclonal antibodies (mAbs) are one of today's most successful therapeutic classes in inflammatory diseases and oncology. A wider accessibility and implementation, however, is hampered by the high product cost and prolonged need for frequent administration. The surge in more effective mAb combination therapies further adds to the costs and risk of toxicity. To address these issues, antibody gene transfer seeks to administer to patients the mAb-encoding nucleotide sequence, rather than the mAb protein. This allows the body to produce its own medicine in a cost- and labor-effective manner, for a prolonged period of time. Expressed mAbs can be secreted systemically or locally, depending on the production site. The current review outlines the state of play and clinical prospects of antibody gene transfer, thereby highlighting recent innovations, opportunities and remaining hurdles. Different expression platforms and a multitude of administration sites have been pursued. Viral vector-mediated mAb expression thereby made the most significant strides. Therapeutic proof of concept has been demonstrated in mice and non-human primates, and intramuscular vectored mAb therapy is under clinical evaluation. However, viral vectors face limitations, particularly in terms of immunogenicity. In recent years, naked DNA has gained ground as an alternative. Attained serum mAb titers in mice, however, remain far below those obtained with viral vectors, and robust pharmacokinetic data in larger animals is limited. The broad translatability of DNA-based antibody therapy remains uncertain, despite ongoing evaluation in patients. RNA presents another emerging platform for antibody gene transfer. Early reports in mice show that mRNA may be able to rival with viral vectors in terms of generated serum mAb titers, although expression appears more short-lived. Overall, substantial progress has been made in the clinical translation of antibody gene transfer. While challenges persist, clinical prospects are amplified by ongoing innovations and the versatility of antibody gene transfer. Clinical introduction can be expedited by selecting the platform approach currently best suited for the mAb or disease of interest. Innovations in expression platform, administration and antibody technology are expected to further improve overall safety and efficacy, and unlock the vast clinical potential of antibody gene transfer.
Collapse
Affiliation(s)
- Kevin Hollevoet
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Campus Gasthuisberg O&N 2, P.B. 820, Herestraat 49, 3000 Leuven, Belgium
| | - Paul J. Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Campus Gasthuisberg O&N 2, P.B. 820, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
22
|
Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L. Advances in Non-Viral DNA Vectors for Gene Therapy. Genes (Basel) 2017; 8:E65. [PMID: 28208635 PMCID: PMC5333054 DOI: 10.3390/genes8020065] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/01/2017] [Indexed: 01/08/2023] Open
Abstract
Uses of viral vectors have thus far eclipsed uses of non-viral vectors for gene therapy delivery in the clinic. Viral vectors, however, have certain issues involving genome integration, the inability to be delivered repeatedly, and possible host rejection. Fortunately, development of non-viral DNA vectors has progressed steadily, especially in plasmid vector length reduction, now allowing these tools to fill in specifically where viral or other non-viral vectors may not be the best options. In this review, we examine the improvements made to non-viral DNA gene therapy vectors, highlight opportunities for their further development, address therapeutic needs for which their use is the logical choice, and discuss their future expansion into the clinic.
Collapse
Affiliation(s)
- Cinnamon L. Hardee
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
| | - Lirio Milenka Arévalo-Soliz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin D. Hornstein
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
| | - Lynn Zechiedrich
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (L.M.A.-S.); (B.D.H.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|