1
|
Schendel DJ. Evolution by innovation as a driving force to improve TCR-T therapies. Front Oncol 2023; 13:1216829. [PMID: 37810959 PMCID: PMC10552759 DOI: 10.3389/fonc.2023.1216829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
Adoptive cell therapies continually evolve through science-based innovation. Specialized innovations for TCR-T therapies are described here that are embedded in an End-to-End Platform for TCR-T Therapy Development which aims to provide solutions for key unmet patient needs by addressing challenges of TCR-T therapy, including selection of target antigens and suitable T cell receptors, generation of TCR-T therapies that provide long term, durable efficacy and safety and development of efficient and scalable production of patient-specific (personalized) TCR-T therapy for solid tumors. Multiple, combinable, innovative technologies are used in a systematic and sequential manner in the development of TCR-T therapies. One group of technologies encompasses product enhancements that enable TCR-T therapies to be safer, more specific and more effective. The second group of technologies addresses development optimization that supports discovery and development processes for TCR-T therapies to be performed more quickly, with higher quality and greater efficiency. Each module incorporates innovations layered onto basic technologies common to the field of immunology. An active approach of "evolution by innovation" supports the overall goal to develop best-in-class TCR-T therapies for treatment of patients with solid cancer.
Collapse
Affiliation(s)
- Dolores J. Schendel
- Medigene Immunotherapies GmbH, Planegg, Germany
- Medigene AG, Planegg, Germany
| |
Collapse
|
2
|
Xiong C, Huang L, Kou H, Wang C, Zeng X, Sun H, Liu S, Wu B, Li J, Wang X, Wang Z, Chen L. Identification of novel HLA-A*11:01-restricted HPV16 E6/E7 epitopes and T-cell receptors for HPV-related cancer immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-004790. [PMID: 36180070 PMCID: PMC9528665 DOI: 10.1136/jitc-2022-004790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Chengjie Xiong
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lihong Huang
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hedan Kou
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Chenwei Wang
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaomin Zeng
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hanli Sun
- Guangdong Xiangxue Life Sciences, Guangzhou, China
| | - Shangyuan Liu
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bin Wu
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingyao Li
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoling Wang
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zibing Wang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Lin Chen
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Mishto M, Horokhovskyi Y, Cormican JA, Yang X, Lynham S, Urlaub H, Liepe J. Database search engines and target database features impinge upon the identification of post-translationally cis-spliced peptides in HLA class I immunopeptidomes. Proteomics 2022; 22:e2100226. [PMID: 35184383 PMCID: PMC9286349 DOI: 10.1002/pmic.202100226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 11/08/2022]
Abstract
Unconventional epitopes presented by HLA class I complexes are emerging targets for T cell targeted immunotherapies. Their identification by mass spectrometry (MS) required development of novel methods to cope with the large number of theoretical candidates. Methods to identify post-translationally spliced peptides led to a broad range of outcomes. We here investigated the impact of three common database search engines - that is, Mascot, Mascot+Percolator, and PEAKS DB - as final identification step, as well as the features of target database on the ability to correctly identify non-spliced and cis-spliced peptides. We used ground truth datasets measured by MS to benchmark methods' performance and extended the analysis to HLA class I immunopeptidomes. PEAKS DB showed better precision and recall of cis-spliced peptides and larger number of identified peptides in HLA class I immunopeptidomes than the other search engine strategies. The better performance of PEAKS DB appears to result from better discrimination between target and decoy hits and hence a more robust FDR estimation, and seems independent to peptide and spectrum features here investigated.
Collapse
Affiliation(s)
- Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of ImmunobiologyKing's College LondonLondonUK
- Francis Crick InstituteLondonUK
| | | | - John A. Cormican
- Max‐Planck‐Institute for Multidisciplinary SciencesGöttingenGermany
| | - Xiaoping Yang
- Proteomics Core Facility, James Black CentreKing's CollegeLondonUK
| | - Steven Lynham
- Proteomics Core Facility, James Black CentreKing's CollegeLondonUK
| | - Henning Urlaub
- Max‐Planck‐Institute for Multidisciplinary SciencesGöttingenGermany
- Institute of Clinical ChemistryUniversity Medical Center GöttingenGöttingenGermany
| | - Juliane Liepe
- Max‐Planck‐Institute for Multidisciplinary SciencesGöttingenGermany
| |
Collapse
|
4
|
Edes I, Clauss J, Stahn R, Japp AS, Lorenz FKM. TCR and CAR Engineering of Primary Human T Cells. Methods Mol Biol 2022; 2521:85-93. [PMID: 35732994 DOI: 10.1007/978-1-0716-2441-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The efficient expression of T-cell receptors (TCRs) or chimeric antigen receptors (CARs) in primary human T cells is crucial for preclinical testing of receptor properties for adoptive T-cell therapies. Multiple streams of technological platforms have been developed in the recent decades to genetically modify primary T cells including nonviral platforms such as transposon-based systems (PiggyBac, Sleeping Beauty), TALENs, or CRISPR-Cas9). The production of CAR- or TCR-encoding retroviral vectors, however, is still the most commonly used technique both in preclinical as well as in clinical settings.In this chapter we describe a comprehensive 12-day protocol for (a) generating high-titered gamma-retroviral vector particles containing the transgene of interest (e.g., TCR , CAR ), (b) the isolation, activation and rapid expansion of primary T cells and (c) the stable genetic engineering of these T cells with the transgene for subsequent characterization.
Collapse
Affiliation(s)
- Inan Edes
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Julian Clauss
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Rainer Stahn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alberto Sada Japp
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Felix K M Lorenz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
5
|
Dudaniec K, Westendorf K, Nössner E, Uckert W. Generation of Epstein-Barr Virus Antigen-Specific T Cell Receptors Recognizing Immunodominant Epitopes of LMP1, LMP2A, and EBNA3C for Immunotherapy. Hum Gene Ther 2021; 32:919-935. [PMID: 33798008 DOI: 10.1089/hum.2020.283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epstein-Barr virus (EBV) infections in healthy individuals are usually cleared by immune cells, wherein CD8+ T lymphocytes play the most important role. However, in some immunocompromised individuals, EBV infections can lead to the development of cancer in B, T, natural killer (NK) cells and epithelial cells. Most EBV-associated cancers express a limited number of virus-specific antigens such as latent membrane proteins (LMP1 and LMP2) and nuclear proteins (EBNA1, -2, EBNA3A, -B, -C, and EBNA-LP). These antigens represent true tumor-specific antigens and can be considered useful targets for T cell receptor (TCR) gene therapy to treat EBV-associated diseases. We used a TCR isolation platform based on a single major histocompatibility complex class I (MHC I) K562 cell library for the detection, isolation, and re-expression of TCRs targeting immunodominant peptide MHC (pMHC). Mature dendritic cells (mDCs) were pulsed with in vitro-transcribed (ivt) RNA encoding for the selected antigen to stimulate autologous T cells. The procedure allowed the mDCs to select an immunogenic epitope of the antigen for processing and presentation on the cell surface in combination with the most suitable MHC I molecule. We isolated eight EBV-specific TCRs. They recognize various pMHCs of EBV antigens LMP1, LMP2A, and EBNA3C, some of them described previously and some newly identified in this study. The TCR genes were molecularly cloned into retroviral vectors and the resultant TCR-engineered T cells secreted interferon-γ after antigen contact and were able to lyse tumor cells. The EBV-specific TCRs can be used as a basis for the generation of a TCR library, which provides a valuable source of TCRs for the production of EBV-specific T cells to treat EBV-associated diseases in patients with different MHC I types.
Collapse
Affiliation(s)
- Krystyna Dudaniec
- Molecular Cell Biology and Gene Therapy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kerstin Westendorf
- Molecular Cell Biology and Gene Therapy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Wolfgang Uckert
- Molecular Cell Biology and Gene Therapy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
6
|
Gielis S, Moris P, Bittremieux W, De Neuter N, Ogunjimi B, Laukens K, Meysman P. Identification of Epitope-Specific T Cells in T-Cell Receptor Repertoires. Methods Mol Biol 2021; 2120:183-195. [PMID: 32124320 DOI: 10.1007/978-1-0716-0327-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Recognition of cancer epitopes by T cells is fundamental for the activation of targeted antitumor responses. As such, the identification and study of epitope-specific T cells has been instrumental in our understanding of cancer immunology and the development of personalized immunotherapies. To facilitate the study of T-cell epitope specificity, we developed a prediction tool, TCRex, that can identify epitope-specific T-cell receptors (TCRs) directly from TCR repertoire data and perform epitope-specificity enrichment analyses. This chapter details the use of the TCRex web tool.
Collapse
Affiliation(s)
- Sofie Gielis
- Adrem Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium.,AUDACIS, Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp, Antwerp, Belgium.,Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
| | - Pieter Moris
- Adrem Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium.,Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
| | - Wout Bittremieux
- Adrem Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium.,Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Nicolas De Neuter
- Adrem Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium.,AUDACIS, Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp, Antwerp, Belgium.,Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- AUDACIS, Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp, Antwerp, Belgium.,Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.,Department of Paediatrics, Antwerp University Hospital, Antwerp, Belgium.,Center for Health Economics Research and Modeling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Adrem Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium.,AUDACIS, Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp, Antwerp, Belgium.,Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
| | - Pieter Meysman
- Adrem Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium. .,AUDACIS, Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp, Antwerp, Belgium. .,Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
7
|
Shibata H, Zhou L, Xu N, Egloff AM, Uppaluri R. Personalized cancer vaccination in head and neck cancer. Cancer Sci 2021; 112:978-988. [PMID: 33368875 PMCID: PMC7935792 DOI: 10.1111/cas.14784] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
Cancer is characterized by an accumulation of somatic mutations that represent a source of neoantigens for targeting by antigen-specific T cells. Head and neck squamous cell carcinoma (HNSCC) has a relatively high mutation burden across all cancer types, and cellular immunity to neoantigens likely plays a key role in HNSCC clinical outcomes. Immune checkpoint inhibitors (CPIs) have brought new treatment options and hopes to patients with recurrent and/or metastatic HNSCC. However, many patients do not benefit from CPI therapies, highlighting the need for novel immunotherapy or combinatorial strategies. One such approach is personalized cancer vaccination targeting tumor-associated antigens and tumor-specific antigens, either as single agents or in combination with other therapies. Recent advances in next-generation genomic sequencing technologies and computational algorithms have enabled efficient identification of somatic mutation-derived neoantigens and are anticipated to facilitate the development of cancer vaccine strategies. Here, we review cancer vaccine approaches against HNSCC, including fundamental mechanisms of a cancer vaccine, considerations for selecting appropriate antigens, and combination therapies.
Collapse
Affiliation(s)
- Hirofumi Shibata
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Liye Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Na Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Tea and Food Science, Anhui Agricultural University, Hefei, China
| | - Ann Marie Egloff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Surgery/Otolaryngology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ravindra Uppaluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Surgery/Otolaryngology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
8
|
Jones HF, Molvi Z, Klatt MG, Dao T, Scheinberg DA. Empirical and Rational Design of T Cell Receptor-Based Immunotherapies. Front Immunol 2021; 11:585385. [PMID: 33569049 PMCID: PMC7868419 DOI: 10.3389/fimmu.2020.585385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
The use of T cells reactive with intracellular tumor-associated or tumor-specific antigens has been a promising strategy for cancer immunotherapies in the past three decades, but the approach has been constrained by a limited understanding of the T cell receptor's (TCR) complex functions and specificities. Newer TCR and T cell-based approaches are in development, including engineered adoptive T cells with enhanced TCR affinities, TCR mimic antibodies, and T cell-redirecting bispecific agents. These new therapeutic modalities are exciting opportunities by which TCR recognition can be further exploited for therapeutic benefit. In this review we summarize the development of TCR-based therapeutic strategies and focus on balancing efficacy and potency versus specificity, and hence, possible toxicity, of these powerful therapeutic modalities.
Collapse
Affiliation(s)
- Heather F. Jones
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| | - Zaki Molvi
- Weill Cornell Medicine, New York, NY, United States
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Martin G. Klatt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
9
|
D’Ippolito E, Wagner KI, Busch DH. Needle in a Haystack: The Naïve Repertoire as a Source of T Cell Receptors for Adoptive Therapy with Engineered T Cells. Int J Mol Sci 2020; 21:E8324. [PMID: 33171940 PMCID: PMC7664211 DOI: 10.3390/ijms21218324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
T cell engineering with antigen-specific T cell receptors (TCRs) has allowed the generation of increasingly specific, reliable, and versatile T cell products with near-physiological features. However, a broad applicability of TCR-based therapies in cancer is still limited by the restricted number of TCRs, often also of suboptimal potency, available for clinical use. In addition, targeting of tumor neoantigens with TCR-engineered T cell therapy moves the field towards a highly personalized treatment, as tumor neoantigens derive from somatic mutations and are extremely patient-specific. Therefore, relevant TCRs have to be de novo identified for each patient and within a narrow time window. The naïve repertoire of healthy donors would represent a reliable source due to its huge diverse TCR repertoire, which theoretically entails T cells for any antigen specificity, including tumor neoantigens. As a challenge, antigen-specific naïve T cells are of extremely low frequency and mostly of low functionality, making the identification of highly functional TCRs finding a "needle in a haystack." In this review, we present the technological advancements achieved in high-throughput mapping of patient-specific neoantigens and corresponding cognate TCRs and how these platforms can be used to interrogate the naïve repertoire for a fast and efficient identification of rare but therapeutically valuable TCRs for personalized adoptive T cell therapy.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Neoplasms/genetics
- Precision Medicine/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
Collapse
Affiliation(s)
- Elvira D’Ippolito
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (E.D.); (K.I.W.)
| | - Karolin I. Wagner
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (E.D.); (K.I.W.)
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (E.D.); (K.I.W.)
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
- Focus Group ‘‘Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München (TUM), 81675 Munich, Germany
| |
Collapse
|
10
|
Kurosawa N, Midorikawa A, Ida K, Fudaba YW, Isobe M. Development of a T-cell receptor mimic antibody targeting a novel Wilms tumor 1-derived peptide and analysis of its specificity. Cancer Sci 2020; 111:3516-3526. [PMID: 32770595 PMCID: PMC7540971 DOI: 10.1111/cas.14602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Wilms tumor 1 (WT1) is an intracellular tumor‐associated antigen that remains inaccessible to antibodies. Recently, T‐cell receptor (TCR) mimic antibodies (TCRm‐Abs), which recognize peptides loaded on human leukocyte antigen (HLA) with higher specificity and affinity than TCR, have been developed as a new antibody class that can target intracellular antigens. To expand the therapeutic targets in tumors with WT1, we developed TCRm‐Abs targeting a novel HLA‐A*02:01‐restricted peptide, WT1C (ALLPAVPSL), and validated their specificity using multiple techniques. Screening of these antibodies by ELISA with a panel of peptide/HLA complexes and by glycine scanning of peptide‐pulsed T2 cells identified one specific clone, #25‐8. Despite the low risk for eliciting broad cross–reactivity of this TCRm‐Ab, analysis of a panel of cell lines, in conjunction with exogenous expression of either or both the HLA‐A*02:01 and WT1 genes in HeLa cells, revealed that #25‐8 reacts with WT1C but also with unknown peptides in the context of HLA‐A*02:01. This potentially dangerous cross–reactivity was confirmed through analysis using chimeric antigen receptor T‐cells carrying the single‐chain variable fragment of #25‐8, which targets WT1‐negative HeLa/A02 cells. To determine the cross–reactive profiles of #25‐8, we applied the PresentER antigen presentation platform with the #25‐8‐recognition motif, which enables the identification of potential off–target peptides expressed in the human proteome. Our results demonstrate the potential of TCRm‐Abs to target a variety of peptides in the context of HLA but also depict the need for systematic validation to identify the cross–reactive peptides for the prediction of off–target toxicity in future clinical translation.
Collapse
Affiliation(s)
- Nobuyuki Kurosawa
- Laboratory of Molecular and Cellular Biology, Faculty of Science and Engineering, Graduate School, University of Toyama, Toyama, Japan
| | - Aki Midorikawa
- Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
| | - Kenta Ida
- Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
| | - Yuka Wakata Fudaba
- Laboratory of Molecular and Cellular Biology, Faculty of Science and Engineering, Graduate School, University of Toyama, Toyama, Japan
| | - Masaharu Isobe
- Laboratory of Molecular and Cellular Biology, Faculty of Science and Engineering, Graduate School, University of Toyama, Toyama, Japan
| |
Collapse
|
11
|
Lanzarotti E, Marcatili P, Nielsen M. T-Cell Receptor Cognate Target Prediction Based on Paired α and β Chain Sequence and Structural CDR Loop Similarities. Front Immunol 2019; 10:2080. [PMID: 31555288 PMCID: PMC6724566 DOI: 10.3389/fimmu.2019.02080] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
T-cell receptors (TCR) mediate immune responses recognizing peptides in complex with major histocompatibility complexes (pMHC) displayed on the surface of cells. Resolving the challenge of predicting the cognate pMHC target of a TCR would benefit many applications in the field of immunology, including vaccine design/discovery and the development of immunotherapies. Here, we developed a model for prediction of TCR targets based on similarity to a database of TCRs with known targets. Benchmarking the model on a large set of TCRs with known target, we demonstrated how the predictive performance is increased (i) by focusing on CDRs rather than the full length TCR protein sequences, (ii) by incorporating information from paired α and β chains, and (iii) integrating information for all 6 CDR loops rather than just CDR3. Finally, we show how integration of the structure of CDR loops, as obtained through homology modeling, boosts the predictive power of the model, in particular in situations where no high-similarity TCRs are available for the query. These findings demonstrate that TCRs that bind to the same target also share, to a very high degree, sequence, and structural features. This observation has profound impact for future development of prediction models for TCR-pMHC interactions and for the use of such models for the rational design of T cell based therapies.
Collapse
Affiliation(s)
- Esteban Lanzarotti
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Paolo Marcatili
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina.,Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
12
|
Ren L, Leisegang M, Deng B, Matsuda T, Kiyotani K, Kato T, Harada M, Park JH, Saloura V, Seiwert T, Vokes E, Agrawal N, Nakamura Y. Identification of neoantigen-specific T cells and their targets: implications for immunotherapy of head and neck squamous cell carcinoma. Oncoimmunology 2019; 8:e1568813. [PMID: 30906664 PMCID: PMC6422382 DOI: 10.1080/2162402x.2019.1568813] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/23/2018] [Accepted: 11/02/2018] [Indexed: 01/04/2023] Open
Abstract
To develop a practically applicable method for T-cell receptor (TCR)-engineered T cell immunotherapy targeting neoantigens, we have been attempting to identify neoantigen-specific T cell receptors (TCRs) and establish TCR-engineered T cells in a 3-4-month period. In this study, we report the characterization of T cell repertoires in tumor microenvironment (TME) and identification of neoantigen-specific TCRs after stimulation of patient-derived T cells. We screened 15 potential neoantigen peptides and successfully identified two CD8+HLA-dextramer+ T cells, which recognized MAGOHBG17A and ZCCHC14P368L. All three dominant TCR clonotypes from MAGOHBG17A-HLA dextramer-sorted CD8+ T cells were also found in T cells in TME, while none of dominant TCR clonotypes from ZCCHC14P368L-HLA dextramer-sorted CD8+ T cells was found in the corresponding TME. The most dominant TCRA/TCRB pairs for these two neoantigens were cloned into HLA-matched healthy donors' T lymphocytes to generate TCR-engineered T cells. The functional assay showed MAGOHBG17A TCR-engineered T cells could be significantly activated in a mutation-specific, HLA-restricted and peptide-dose-dependent manner while ZCCHC14P368L TCR-engineered T cells could not. Our data showed neoantigen-reactive T cell clonotypes that were identified in the patient's peripheral blood could be present in the corresponding TME and might be good TCRs targeting neoantigens.
Collapse
Affiliation(s)
- Lili Ren
- Department of Medicine, The University of Chicago, Chicago, IL, USA.,Cytotherapy Laboratory, Shenzhen People's Hospital (The second Clinical Medical College of Jinan University), Shenzhen, China
| | - Matthias Leisegang
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Boya Deng
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Tatsuo Matsuda
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Kazuma Kiyotani
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Taigo Kato
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Makiko Harada
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Jae-Hyun Park
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Tanguy Seiwert
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Everett Vokes
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Nishant Agrawal
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Yusuke Nakamura
- Department of Medicine, The University of Chicago, Chicago, IL, USA.,Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Surgery, The University of Chicago, Chicago, IL, USA
| |
Collapse
|