1
|
Bian X, Zhou L, Luo Z, Liu G, Hang Z, Li H, Li F, Wen Y. Emerging Delivery Systems for Enabling Precision Nucleic Acid Therapeutics. ACS NANO 2025; 19:4039-4083. [PMID: 39834294 DOI: 10.1021/acsnano.4c11858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Nucleic acid therapeutics represent a highly promising treatment approach in modern medicine, treating diseases at the genetic level. However, these therapeutics face numerous challenges in practical applications, particularly regarding their stability, effectiveness, cellular uptake efficiency, and limitations in delivering them specifically to target tissues. To overcome these obstacles, researchers have developed various innovative delivery systems, including viral vectors, lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, protein carriers, exosomes, antibody oligonucleotide conjugates, and DNA nanostructure-based delivery systems. These systems enhance the therapeutic efficacy of nucleic acid drugs by improving their stability, targeting specificity, and half-life in vivo. In this review, we systematically discuss different types of nucleic acid drugs, analyze the major barriers encountered in their delivery, and summarize the current research progress in emerging delivery systems. We also highlight the latest advancements in the application of these systems for treating genetic diseases, infectious diseases, cancer, brain diseases, and wound healing. This review aims to provide a comprehensive overview of nucleic acid drug delivery systems' current status and future directions by integrating the latest advancements in nanotechnology, biomaterials science, and gene editing technologies, emphasizing their transformative potential in precision medicine.
Collapse
Affiliation(s)
- Xiaochun Bian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhiwei Luo
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guotao Liu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongci Hang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haohao Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fengyong Li
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
2
|
Najafi S, Majidpoor J, Mortezaee K. The impact of oncolytic adenoviral therapy on the therapeutic efficacy of PD-1/PD-L1 blockade. Biomed Pharmacother 2023; 161:114436. [PMID: 36841031 DOI: 10.1016/j.biopha.2023.114436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
Immunotherapy has revolutionized treatment of cancer during the last decades. Oncolytic virotherapy has also emerged as a strategy to fight against cancer cells both via lysis of malignant cells and activating immune responses. Accepted as a logical strategy, combination of monoclonal antibodies particularly against the programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) is introduced to improve clinical responses to immune checkpoint inhibitors (ICIs). Accordingly, Talimogene laherparepvec (T-VEC) has received approval for clinical use, while a number of oncolytic Adenoviruses (Ads) are being investigated in clinical trials of malignancies. Combination of oncolytic Ads with PD-1/PD-L1 inhibitors have shown potentials in promoting responses to ICIs, changing the tumor microenvironment, inducing long-term protection against tumor, and promoting survival among mice models of malignancies. Regarding the increasing importance of oncolytic Ads in combination therapy of cancers, in this review we decide to outline recent studies in this field.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran; Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
3
|
Ni N, Deng F, He F, Wang H, Shi D, Liao J, Zou Y, Wang H, Zhao P, Hu X, Chen C, Hu DA, Sabharwal M, Qin KH, Wagstaff W, Qin D, Hendren-Santiago B, Haydon RC, Luu HH, Reid RR, Shen L, He TC, Fan J. A one-step construction of adenovirus (OSCA) system using the Gibson DNA Assembly technology. Mol Ther Oncolytics 2021; 23:602-611. [PMID: 34977337 PMCID: PMC8666640 DOI: 10.1016/j.omto.2021.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Adenovirus (Ad) is a non-enveloped linear double-stranded DNA virus with >50 serotypes in humans. Ad vectors have been used as gene delivery vehicles to express transgenes, small interfering RNAs (siRNAs) for gene silencing, or CRISPR/Cas and designer nucleases for genome editing. Although several methods are used to generate Ad vectors, the Ad-making process remains technically challenging and time consuming. Moreover, the Ad-making techniques have not been improved for the past two decades. Gibson DNA Assembly (GDA) technology allows one-step isothermal DNA assembly of multiple overlapping fragments. Here, we developed a one-step construction of Ad (OSCA) system using GDA technology. Specifically, we first engineered several adenoviral recipient vectors that contain the ccdB suicide gene flanked with two 20-bp unique sequences, which serve as universal sites for GDA reactions in the Ad genome ΔE1 region. In two proof-of-principle experiments, we demonstrated that the GDA reactions were highly efficient and that the resulting Ad plasmids could be effectively packaged into Ads. Ad-mediated expression of mouse BMP9 in mesenchymal stem cells was shown to effectively induce osteogenic differentiation both in vitro and in vivo. Collectively, our results demonstrate that the OSCA system drastically streamlines the Ad-making process and should facilitate Ad-based applications in basic, translational, and clinical research.
Collapse
Affiliation(s)
- Na Ni
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Fang Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Pathophysiology, and Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Gastroenterology, Blood Transfusion, and Orthopaedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junyi Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Gastroenterology, Blood Transfusion, and Orthopaedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yulong Zou
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Division of Research and Development, Decoding Therapeutics, Inc., Mt Prospect, IL 60056, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Gastroenterology, Blood Transfusion, and Orthopaedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xue Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Gastroenterology, Blood Transfusion, and Orthopaedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Daniel A Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Maya Sabharwal
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin H Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - David Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bryce Hendren-Santiago
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Xie M, Viviani M, Fussenegger M. Engineering precision therapies: lessons and motivations from the clinic. Synth Biol (Oxf) 2020; 6:ysaa024. [PMID: 33817342 PMCID: PMC7998714 DOI: 10.1093/synbio/ysaa024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
In the past decade, gene- and cell-based therapies have been at the forefront of the biomedical revolution. Synthetic biology, the engineering discipline of building sophisticated 'genetic software' to enable precise regulation of gene activities in living cells, has been a decisive success factor of these new therapies. Here, we discuss the core technologies and treatment strategies that have already gained approval for therapeutic applications in humans. We also review promising preclinical work that could either enhance the efficacy of existing treatment strategies or pave the way for new precision medicines to treat currently intractable human conditions.
Collapse
Affiliation(s)
- Mingqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Mirta Viviani
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|