1
|
Somasundaram DB, Aravindan S, Major R, Natarajan M, Aravindan N. MMP-9 reinforces radiation-induced delayed invasion and metastasis of neuroblastoma cells through second-signaling positive feedback with NFκB via both ERK and IKK activation. Cell Biol Toxicol 2023; 39:1053-1076. [PMID: 34626302 DOI: 10.1007/s10565-021-09663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Neuroblastoma (NB) progression is branded with hematogenous metastasis and frequent relapses. Despite intensive multimodal clinical therapy, outcomes for patients with progressive disease remain poor, with negligible long-term survival. Therefore, understanding the acquired molecular rearrangements in NB cells with therapy pressure and developing improved therapeutic strategies is a critical need to improve the outcomes for high-risk NB patients. We investigated the rearrangement of MMP9 in NB with therapy pressure, and unveiled the signaling that facilitates NB evolution. Radiation-treatment (RT) significantly increased MMP9 expression/activity, and the induced enzyme activity was persistently maintained across NB cell lines. Furthermore, RT-triggered NFκB transcriptional activity and this RT-induced NFκB were required/adequate for MMP9 maintenance. RT-triggered NFκB-dependent MMP9 actuated a second-signaling feedback to NFκB, facilitating a NFκB-MMP9-NFκB positive feedback cycle (PFC). Critically, MMP9-NFκB feedback is mediated by MMP9-dependent activation of IKKβ and ERK phosphotransferase activity. Beyond its tumor invasion/metastasis function, PFC-dependent MMP9 lessens RT-induced apoptosis and favors survival pathway through the activation of NFκB signaling. In addition, PFC-dependent MMP9 regulates 19 critical molecular determinants that play a pivotal role in tumor evolution. Interestingly, seven of 19 genes possess NFκB-binding sites, demonstrating that MMP9 regulates these molecules by activating NFκB. Collectively, these data suggest that RT-triggered NFκB-dependent MMP9 actuates feedback to NFκB though IKKβ- and ERK1/2-dependent IκBα phosphorylation. This RT-triggered PFC prompts MMP9-dependent survival advantage, tumor growth, and dissemination. Targeting therapy-pressure-driven PFC and/or selective inhibition of MMP9 maintenance could serve as promising therapeutic strategies for treatment of progressive NB.
Collapse
Affiliation(s)
- Dinesh Babu Somasundaram
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, BMSB 311, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA
| | | | - Ryan Major
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, BMSB 311, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA
| | - Mohan Natarajan
- Department of Pathology & Laboratory Medicine, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, BMSB 311, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Pereira PA, Serra MES, Serra AC, Coelho JFJ. Application of vinyl polymer-based materials as nucleic acids carriers in cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1820. [PMID: 35637638 DOI: 10.1002/wnan.1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/13/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Nucleic acid-based therapies have changed the paradigm of cancer treatment, where conventional treatment modalities still have several limitations in terms of efficacy and severe side effects. However, these biomolecules have a short half-life in vivo, requiring multiple administrations, resulting in severe suffering, discomfort, and poor patient compliance. In the early days of (nano)biotechnology, these problems caused concern in the medical community, but recently it has been recognized that these challenges can be overcome by developing innovative formulations. This review focuses on the use of vinyl polymer-based materials for the protection and delivery of nucleic acids in cancer. First, an overview of the properties of nucleic acids and their versatility as drugs is provided. Then, key information on the achievements to date, the most effective delivery methods, and the evaluation of functionalization approaches (stimulatory strategies) are critically discussed to highlight the importance of vinyl polymers in the new cancer treatment approaches. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Patrícia Alexandra Pereira
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, Portugal
| | | | - Arménio C Serra
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
| | - Jorge F J Coelho
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
| |
Collapse
|
3
|
Zhao J, Yao L, Nie S, Xu Y. Low-viscosity sodium alginate combined with TiO 2 nanoparticles for improving neuroblastoma treatment. Int J Biol Macromol 2020; 167:921-933. [PMID: 33181214 DOI: 10.1016/j.ijbiomac.2020.11.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/20/2020] [Accepted: 11/07/2020] [Indexed: 01/29/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles have been explored to prevent various cancer developments but it may cause oxidation, inflammation and high cytotoxicity. Alginate has nontoxic, anti-inflammatory, and antioxidant effects. We aimed to explore the effects of alginate-TiO2 temozolomide (TMZ) nanoparticles on neuroblastoma. A neuroblastoma model was established with neuroblastoma cells and alginate-TiO2 TMZ nanoparticles were made by spraying low-viscosity sodium alginate (250-360 kDa). The morphology of nanoparticles was observed via scanning electron microscope (SEM). The crystallinity values were analyzed via X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopic study. Neuroblastoma mice were treated with saline solution, TMZ, TiO2-TMZ and alginate-TiO2-TMZ nanoparticles. Anti-oxidant, anti-inflammatory, and anti-tumor properties and the mouse survival rates were measured. The spectrometric profiles of alginate-TiO2 were consistent with those of TiO2 and alginate. Alginate-TiO2 TMZ nanoparticles had higher cytotoxicity toward neuroblastoma cells and less inhibitory activity toward normal neuronal cells. The combined nanoparticles increased antioxidant, anti-inflammatory and antitumor activities and prolonged the survival time of the neuroblastoma model (P < 0.05). On the other hand, Alginate-TiO2 TMZ nanoparticles reduced the levels of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB). The combined nanoparticles improved neuroblastoma treatment by affecting NF-κB and MAPK signals.
Collapse
Affiliation(s)
- Jixue Zhao
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun 130000, China
| | - Liyu Yao
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun 130000, China
| | - Shu Nie
- Department of Pediatrics, The First Hospital of Jilin University, Changchun 130000, China
| | - Yang Xu
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
4
|
Wang B, Yang Y, Deng X, Ban Y, Chao L. Interaction of M2 macrophages and endometrial cells induces downregulation of GRIM-19 in endometria of adenomyosis. Reprod Biomed Online 2020; 41:790-800. [PMID: 32896475 DOI: 10.1016/j.rbmo.2020.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/11/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022]
Abstract
RESEARCH QUESTION Does the aggregation of M2 macrophages affect the expression of gene associated with retinoid-interferon-induced mortality 19 (GRIM-19) in adenomyosis? DESIGN Endometrial tissues were collected from patients with (n = 15) and without (n = 15) adenomyosis. Tissues were analysed for GRIM-19 and toll-like receptor 4 (TLR4) expression by immunohistochemistry and western blotting. Apoptosis was analysed by TdT (terminal deoxynucleotidyl transferase)-mediated dUDP nick-end labelling (TUNEL) assay. Human endometrial stromal cells (HESC) were transfected with GRIM-19 small interfering RNA (SiRNA) to knockdown GRIM-19 expression. The HESC were co-cultured with M2 macrophages to detect the influence of M2 macrophages in HESC cells. Analyses included GRIM-19, caspase-3 and TLR4 expression by western blotting, and GRIM-19 and TLR4 by quantitative real-time polymerase chain reaction. Apoptosis was measured by flow cytometry and TUNEL assay. Cell proliferation (Cell Counting Kit-8 assay) and migration assays were carried out. RESULTS The expression of GRIM-19 was significantly lower in adenomyosis lesions compared with controls (P < 0.001). Deficiency of GRIM-19 induced by siRNA decreased apoptosis and increased proliferation and migration in HESC. A significant decrease in GRIM-19 expression occurred in HESC after co-culture with M2 macrophages (P = 0.018). After co-culture with M2 macrophage, apoptosis decreased and proliferation and cell invasion in HESC increased. Protein (P = 0.006) and mRNA (P = 0.013) expression of TLR4 in HESC also reduced after this co-culture. Up-regulation of GRIM-19 occurred in HESC treated with the activator TLR4 (P = 0.016). Up-regulation of GRIM-19 was significantly reversed in cells treated with the TLR4 inhibitor (P = 0.011). CONCLUSION M2 macrophages may be involved in regulating the expression of GRIM-19 partly through the TLR4 signalling axis in adenomyosis.
Collapse
Affiliation(s)
- Bingyu Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yang Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Xiaohui Deng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yanli Ban
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Lan Chao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|