1
|
Camilleri AE, Cung M, Hart FM, Pagovich OE, Crystal RG, Greenblatt MB, Stiles KM. Gene Therapy to Treat Osteopenia Associated With Chronic Ethanol Consumption and Aldehyde Dehydrogenase 2 Deficiency. JBMR Plus 2023; 7:e10723. [PMID: 37065630 PMCID: PMC10097638 DOI: 10.1002/jbm4.10723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/27/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) deficiency affects 35% to 45% of East Asians and 8% of the world population. ALDH2 is the second enzyme in the ethanol metabolism pathway. The common genetic variant ALDH2*2 allele has a glutamic acid-to-lysine substitution at position 487 (E487K) that reduces the enzyme activity, resulting in an accumulation of acetaldehyde after ethanol consumption. The ALDH2*2 allele is associated with increased risk of osteoporosis and hip fracture. Our prior study showed that administration of an adeno-associated virus (AAV) serotype rh.10 gene transfer vector expressing the human ALDH2 cDNA (AAVrh.10hALDH2) before initiation of ethanol consumption prevented bone loss in ALDH2-deficient homozygous knockin mice carrying the E487K mutation (Aldh2 E487K+/+). We hypothesized that AAVrh.10hALDH2 administration after establishment of osteopenia would be able to reverse bone loss due to ALDH2 deficiency and chronic ethanol consumption. To test this hypothesis, male and female Aldh2 E487K+/+ mice (n = 6) were given ethanol in the drinking water for 6 weeks to establish osteopenia and then administered AAVrh.10hALDH2 (1011 genome copies). Mice were evaluated for an additional 12 weeks. AAVrh.10hALDH2 administration after osteopenia was established corrected weight loss and locomotion phenotypes and, importantly, increased midshaft femur cortical bone thickness, the most important component of bone in the resistance to fractures, and showed a trend toward increased trabecular bone volume. AAVrh.10hALDH2 is a promising therapeutic for osteoporosis in ALDH2-deficient individuals. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anna E Camilleri
- Department of Genetic MedicineWeill Cornell Medical CollegeNew YorkNYUSA
| | - Michelle Cung
- Pathology and Laboratory MedicineWeill Cornell Medical CollegeNew YorkNYUSA
| | - Fiona M Hart
- Department of Genetic MedicineWeill Cornell Medical CollegeNew YorkNYUSA
| | - Odelya E Pagovich
- Department of Genetic MedicineWeill Cornell Medical CollegeNew YorkNYUSA
| | - Ronald G Crystal
- Department of Genetic MedicineWeill Cornell Medical CollegeNew YorkNYUSA
| | - Matthew B Greenblatt
- Pathology and Laboratory MedicineWeill Cornell Medical CollegeNew YorkNYUSA
- Research DivisionHospital for Special SurgeryNew YorkNYUSA
| | - Katie M Stiles
- Department of Genetic MedicineWeill Cornell Medical CollegeNew YorkNYUSA
| |
Collapse
|
2
|
Yamauchi T, Shangraw S, Zhai Z, Ravindran Menon D, Batta N, Dellavalle RP, Fujita M. Alcohol as a Non-UV Social-Environmental Risk Factor for Melanoma. Cancers (Basel) 2022; 14:5010. [PMID: 36291794 PMCID: PMC9599745 DOI: 10.3390/cancers14205010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Although cancer mortality has declined among the general population, the incidence of melanoma continues to rise. While identifying high-risk cohorts with genetic risk factors improves public health initiatives and clinical care management, recognizing modifiable risk factors such as social-environmental risk factors would also affect the methods of patient outreach and education. One major modifiable social-environmental risk factor associated with melanoma is ultraviolet (UV) radiation. However, not all forms of melanoma are correlated with sun exposure or occur in sun-exposed areas. Additionally, UV exposure is rarely associated with tumor progression. Another social-environmental factor, pregnancy, does not explain the sharply increased incidence of melanoma. Recent studies have demonstrated that alcohol consumption is positively linked with an increased risk of cancers, including melanoma. This perspective review paper summarizes epidemiological data correlating melanoma incidence with alcohol consumption, describes the biochemical mechanisms of ethanol metabolism, and discusses how ethanol and ethanol metabolites contribute to human cancer, including melanoma.
Collapse
Affiliation(s)
- Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Shangraw
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dinoop Ravindran Menon
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nisha Batta
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert P Dellavalle
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Can gene therapy be used to prevent cancer? Gene therapy for aldehyde dehydrogenase 2 deficiency. Cancer Gene Ther 2022; 29:889-896. [PMID: 34799722 PMCID: PMC9117562 DOI: 10.1038/s41417-021-00399-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022]
Abstract
Approximately 8% of the world population and 35-45% of East Asians are carriers of the hereditary disorder aldehyde dehydrogenase 2 (ALDH2) deficiency. ALDH2 plays a central role in the liver to metabolize ethanol. With the common E487K variant, there is a deficiency of ALDH2 function; when ethanol is consumed, there is a systemic accumulation of acetaldehyde, an intermediate product in ethanol metabolism. In ALDH2-deficient individuals, ethanol consumption acutely causes the "Alcohol Flushing Syndrome" with facial flushing, tachycardia, nausea, and headaches. With chronic alcohol consumption, ALDH2 deficiency is associated with a variety of disorders, including a remarkably high risk for aerodigestive tract cancers. Acetaldehyde is a known carcinogen. The epidemiologic data relating to the association of ALDH2 deficiency and cancer risk are striking: ALDH2 homozygotes who are moderate-to-heavy consumers of ethanol have a 7-12-fold increased risk for esophageal cancer, making ALDH2 deficiency the most common hereditary disorder associated with an increased cancer risk. In this review, we summarize the genetics and biochemistry of ALDH2, the epidemiology of cancer risk associated with ALDH2 deficiency, the metabolic consequences of ethanol consumption associated with ALDH2 deficiency, and gene therapy strategies to correct ALDH2 deficiency and its associated cancer risk. With the goal of reducing the risk of aerodigestive tract cancers, in the context that ALDH2 is a hereditary disorder and ALDH2 functions primarily in the liver, ALDH2 deficiency is an ideal target for the application of adeno-associated virus-mediated liver-directed gene therapy to prevent cancer.
Collapse
|
4
|
de Melo-Martin I, Crystal RG. Primum Non Nocere: Should Gene Therapy Be Used to Prevent Potentially Fatal Disease but Enable Potentially Destructive Behavior? Hum Gene Ther 2021; 32:529-534. [PMID: 33752441 DOI: 10.1089/hum.2021.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) deficiency constitutes one of the most common hereditary enzyme deficiencies, affecting 35% to 40% of East Asians and 8% of the world population. It causes the well-known Asian Alcohol Flush Syndrome, characterized by facial flushing, palpitation, tachycardia, nausea, and other unpleasant feelings when alcohol is consumed. It is also associated with a marked increase in the risk of a variety of serious disorders, including esophageal cancer and osteoporosis. Our recent studies with murine models have demonstrated that a one-time administration of an adeno-associated virus (AAV) gene transfer vector expressing the human ALDH2 coding sequence (AAVrh.10hALDH2) will correct the deficiency state and prevent alcohol-induced abnormalities of the esophagus and bone. If successful in humans, such strategy would reduce the increased risk-associated disorders such as esophageal cancer and osteoporosis, but also prevent the Asian Alcohol Flush Syndrome. This treatment thus raises ethical concerns: although it would potentially prevent fatal disease, it could also allow affected individuals to drink alcohol without suffering the Asian Alcohol Flush Syndrome and, hence, potentially enable personal destructive behavior. Here we explore the ethical arguments against the development of a gene therapy for ALDH2 deficiency and we find them wanting. We contend that development of such treatments is ethically appropriate and should be part and parcel of the solutions offered against the condition.
Collapse
Affiliation(s)
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
5
|
A critical assessment of the potential of pharmacological modulation of aldehyde dehydrogenases to treat the diseases of bone loss. Eur J Pharmacol 2020; 886:173541. [PMID: 32896553 DOI: 10.1016/j.ejphar.2020.173541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022]
Abstract
Chronic alcoholism (CA) decreases bone mass and increases the risk of hip fracture. Alcohol and its main metabolite, acetaldehyde impairs osteoblastogenesis by increasing oxidative stress. Aldehyde dehydrogenase (ALDH) is the rate-limiting enzyme in clearing acetaldehyde from the body. The clinical relevance of ALDH in skeletal function has been established by the discovery of single nucleotide polymorphism, SNP (rs671) in the ALDH2 gene giving rise to an inactive form of the enzyme (ALDH2*2) that causes increased serum acetaldehyde and osteoporosis in the affected individuals. Subsequent mouse genetics studies have replicated human phenotype in mice and confirmed the non-redundant role of ALDH2 in bone homeostasis. The activity of ALDH2 is amenable to pharmacological modulation. ALDH2 inhibition by disulfiram (DSF) and activation by alda-1 cause reduction and induction of bone formation, respectively. DSF also inhibits peak bone mass accrual in growing rats. On the other hand, DSF showed an anti-osteoclastogenic effect and protected mice from alcohol-induced osteopenia by inhibiting ALDH1a1 in bone marrow monocytes. Besides DSF, there are several classes of ALDH inhibitors with disparate skeletal effects. Alda-1, the ALDH2 activator induced osteoblast differentiation by increasing bone morphogenic protein 2 (BMP2) expression via ALDH2 activation. Alda-1 also restored ovariectomy-induced bone loss. The scope of structure-activity based studies with ALDH2 and the alda-1-like molecule could lead to the discovery of novel osteoanabolic molecules. This review will critically discuss the molecular mechanism of the ethanol and its principal metabolite, acetaldehyde in the context of ALDH2 in bone cells, and skeletal homeostasis.
Collapse
|
6
|
Crystal RG. My Pathway to Gene Therapy. Hum Gene Ther 2020; 31:273-282. [DOI: 10.1089/hum.2020.29112.rgc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|