1
|
Ciobanu C, Yanda M, Zeidan A, Izzi J, Guggino WB, Cebotaru L. Amelioration of airway and GI disease in G551D-CF ferrets by AAV1 and AAV6. Gene Ther 2024; 31:499-510. [PMID: 39069560 DOI: 10.1038/s41434-024-00469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Gene therapy for CF has concentrated on targeting the lung. Here we took a different approach by injecting into the cephalic vein and spraying into the trachea of G551D, CF ferrets either AAV1 or 6 containing Δ27-264-CFTR, a truncated version of CFTR. Treatment with the potentiator VX-770 was halted for 7 days before instillation to induce a disease phenotype. Indeed, all ferrets were pancreas-insufficient when they entered the study. Four ferrets (three receiving AAV1 and one AAV6) were necropsied 48 days after vector delivery, and four (three receiving AAV6, one AAV1) were euthanized or died prior to the planned necropsy. AAV1 or AAV6 vector genomes, mRNA expression, and CFTR protein were detected in all tracheal and lung samples and in the liver, pancreas, and ileum of the treated ferrets. Surface and basal airway cells, pancreatic and bile ducts, and ileal crypts and villi were successfully transduced. Obstruction of the airways accompanied by pulmonary hemorrhaging, plugged pancreatic and bile ducts as well as mucous plugs in the ileum were noticed in untreated but absent from transduced ferrets necropsied at 48 days. Transduction of G551D ferrets suggests that a combination of systemic and airway application may be the preferred route of delivery for CF.
Collapse
Affiliation(s)
- Cristian Ciobanu
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Murali Yanda
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Adi Zeidan
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jessica Izzi
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - William B Guggino
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Liudmila Cebotaru
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Kuoch H, Krotova K, Graham ML, Brantly ML, Aslanidi G. Multiplexing AAV Serotype-Specific Neutralizing Antibodies in Preclinical Animal Models and Humans. Biomedicines 2023; 11:biomedicines11020523. [PMID: 36831059 PMCID: PMC9953293 DOI: 10.3390/biomedicines11020523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
The accurate assessment of AAV-specific pre-existing humoral immunity due to natural viral infection is critical for the efficient use of clinical gene therapy. The method described in the present study applies equivalent infection conditions to each AAV serotype (AAV1, AAV2, AAV3, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, and AAVAnc80L65). In the current study, we validated the assay by assessing AAV-neutralizing antibody titers in a limited cohort of random human donors and well-established preclinical large animal models, including dogs and non-human primates (NHPs). We achieved a rapid and accurate evaluation of neutralizing titers for each individual subject that can be used for clinical enrollment based on specific AAV serotypes and individualized selection of the most suitable AAV serotype for each specific patient.
Collapse
Affiliation(s)
- Hisae Kuoch
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Karina Krotova
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Melanie L. Graham
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, MN 55108, USA
| | - Mark L. Brantly
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Medical School, University of Florida, Gainesville, FL 32610, USA
| | - George Aslanidi
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
- Correspondence: ; Tel.: +1-507-437-9622; Fax: +1-507-437-9606
| |
Collapse
|
3
|
Zaman H, Khan A, Khan K, Toheed S, Abdullah M, Zeeshan HM, Hameed A, Umar M, Shahid M, Malik K, Afzal S. Adeno-Associated Virus-Mediated Gene Therapy. Crit Rev Eukaryot Gene Expr 2023; 33:87-100. [PMID: 37522547 DOI: 10.1615/critreveukaryotgeneexpr.2023048135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Choice of vector is the most critical step in gene therapy. Adeno-associated viruses (AAV); third generation vectors, are getting much attention of scientists to be used as vehicles due to their non-pathogenicity, excellent safety profile, low immune responses, great efficiency to transduce non-dividing cells, large capacity to transfer genetic material and long-term expression of genetic payload. AAVs have multiple serotypes and each serotype shows tropism for a specific cell. Different serotypes are used to target liver, lungs, muscles, retina, heart, CNS, kidneys, etc. Furthermore, AAV based gene therapies have tremendous marketing applications that can be perfectly incorporated in the anticipated sites of the host target genome resulting in life long expression of transgenes. Some therapeutic products use AAV vectors that are used to treat lipoprotein lipase deficiency (LPLD) and it is injected intramuscularly, to treat mutated retinal pigment epithelium RPE65 (RPE65) that is introduced to subretinal space, an intravenous infusion to treat spinal muscular atrophy and rAAV2-CFTR vector is introduced into nasal epithelial cells to treat cystic fibrosis. AAV therapies and other such interdisciplinary methodologies can create the miracles for the generation of precision gene therapies for the treatment of most serious and sometimes fatal disorders.
Collapse
Affiliation(s)
- Hassan Zaman
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Aakif Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Khalid Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shazma Toheed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Abdullah
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | - Abdul Hameed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Umar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shahid
- Division of Molecular Virology and Infectious Diseases, Center of Excellence in Molecular Biology (CEMB), 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Kausar Malik
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Center of Excellence in Molecular Biology (CEMB), 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
4
|
Reshetnikov VV, Chirinskaite AV, Sopova JV, Ivanov RA, Leonova EI. Cas-Based Systems for RNA Editing in Gene Therapy of Monogenic Diseases: In Vitro and in Vivo Application and Translational Potential. Front Cell Dev Biol 2022; 10:903812. [PMID: 35784464 PMCID: PMC9245891 DOI: 10.3389/fcell.2022.903812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Rare genetic diseases reduce quality of life and can significantly shorten the lifespan. There are few effective treatment options for these diseases, and existing therapeutic strategies often represent only supportive or palliative care. Therefore, designing genetic-engineering technologies for the treatment of genetic diseases is urgently needed. Rapid advances in genetic editing technologies based on programmable nucleases and in the engineering of gene delivery systems have made it possible to conduct several dozen successful clinical trials; however, the risk of numerous side effects caused by off-target double-strand breaks limits the use of these technologies in the clinic. Development of adenine-to-inosine (A-to-I) and cytosine-to-uracil (C-to-U) RNA-editing systems based on dCas13 enables editing at the transcriptional level without double-strand breaks in DNA. In this review, we discuss recent progress in the application of these technologies in in vitro and in vivo experiments. The main strategies for improving RNA-editing tools by increasing their efficiency and specificity are described as well. These data allow us to outline the prospects of base-editing systems for clinical application.
Collapse
Affiliation(s)
- Vasiliy V. Reshetnikov
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
- Department of Molecular Genetics, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Angelina V. Chirinskaite
- Center of Transgenesis and Genome Editing, St. Petersburg State University, St. Petersburg, Russia
| | - Julia V. Sopova
- Center of Transgenesis and Genome Editing, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Roman A. Ivanov
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
| | - Elena I. Leonova
- Center of Transgenesis and Genome Editing, St. Petersburg State University, St. Petersburg, Russia
- Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
5
|
Yanda MK, Tomar V, Cebotaru CV, Guggino WB, Cebotaru L. Short-Term Steroid Treatment of Rhesus Macaque Increases Transduction. Hum Gene Ther 2022; 33:131-147. [PMID: 34806411 PMCID: PMC8885436 DOI: 10.1089/hum.2021.239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Repeat dosing poses a major hurdle for the development of an adeno-associated virus (AAV)-based gene therapy for cystic fibrosis, in part because of the potential for development of an immune reaction to the AAV1 capsid proteins. Here, to dampen the immune response to AAV1, we treated Rhesus monkeys with methylprednisolone before and after the instillation of two doses of AAV1Δ27-264-CFTR into their airways at 0 and 30 days, followed by a single dose of AAV1-GFP on day 60. Animals were euthanized on day 90, except for one monkey that was sacrificed at 1 year. No adverse events occurred, indicating that the two AAV1 vectors are safe. rAAV1-CFTR and AAV1-GFP vector genomes and mRNA transcripts were detectable in all lung sections and in the liver and pancreas at day 90 and after 1 year at levels comparable with animals necropsied at 90 days. The numbers of vector genomes for cystic fibrosis transmembrane regulator (CFTR) and green fluorescent protein (GFP) detected here were higher than those found in the monkeys infected without methylprednisolone treatment that we tested previously.1 Also, lung surface and keratin 5-positive basal cells showed higher CFTR and GFP staining than did the cells from the uninfected monkey control. Positive immunostaining, also detected in the liver and pancreas, remained stable for at least a year. All animals seroconverted for anticapsid antibodies by 90 days post-treatment. The neutralizing antibody titer declined in the animal necropsied at 1 year. Conclusion: AAV1 safely and effectively transduces monkey airway and basal cells. Both the presence of vector genomes and transduction from AAV1-CFTR and AAV1-GFP virus seen in the monkeys 4 months to 1 year after the first instillation suggest that repeat dosing with AAV1-based vectors is achievable, particularly after methylprednisolone treatment.
Collapse
Affiliation(s)
- Murali K. Yanda
- Department of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vartika Tomar
- Department of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cristina Valeria Cebotaru
- Department of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William B. Guggino
- Department of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liudmila Cebotaru
- Department of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Correspondence: Dr. Liudmila Cebotaru, Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Hunterian 415, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Tissue and cell-type-specific transduction using rAAV vectors in lung diseases. J Mol Med (Berl) 2021; 99:1057-1071. [PMID: 34021360 DOI: 10.1007/s00109-021-02086-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Gene therapy of genetically determined diseases, including some pathologies of the respiratory system, requires an efficient method for transgene delivery. Recombinant adeno-associated viral (rAAV) vectors are well studied and employed in gene therapy, as they are relatively simple and low immunogenic and able to efficiently transduce eukaryotic cells. To date, many natural and artificial (with modified capsids) AAV serotypes have been isolated, demonstrating preferential tropism toward different tissues and cells in accordance with the prevalent receptors on the cell surface. However, rAAV-mediated delivery is not strictly specific due to wide tropism of some viral serotypes. Thus, the development of the methods allowing modulating specificity of these vectors could be beneficial in some cases. This review describes various approaches for retargeting rAAV to respiratory cells, for example, using different types of capsid modifications and regulation of a transgene expression by tissue-specific promoters. Part of the review is devoted to the issues of transduction of stem and progenitor lung cells using AAV, which is a complicated task today.
Collapse
|
7
|
Farrow N, Cmielewski P, Delhove J, Rout-Pitt N, Vaughan L, Kuchel T, Christou C, Finnie J, Smith M, Knight E, Donnelley M, Parsons D. Towards Human Translation of Lentiviral Airway Gene Delivery for Cystic Fibrosis: A One-Month CFTR and Reporter Gene Study in Marmosets. Hum Gene Ther 2021; 32:806-816. [PMID: 33446042 DOI: 10.1089/hum.2020.267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Gene therapy continues to be a promising contender for the treatment of cystic fibrosis (CF) airway disease. We have previously demonstrated that airway conditioning with lysophosphatidylcholine (LPC) followed by delivery of a HIV-1-based lentiviral (LV) vector functionally corrects the CF transmembrane conductance regulator (CFTR) defect in the nasal airways of CF mice. In our earlier pilot study we showed that our technique can transduce marmoset lungs acutely; this study extends that work to examine gene expression in this nonhuman primate (NHP) 1 month after gene vector treatment. A mixture of three separate HIV-1 vesicular stomatitis virus G (VSV-G)-pseudotyped LV vectors containing the luciferase (Luc), LacZ, and hCFTR transgenes was delivered into the trachea through a miniature bronchoscope. We examined whether a single-dose delivery of LV vector after LPC conditioning could increase levels of transgene expression in the trachea and lungs compared with control (phosphate-buffered saline [PBS]) conditioning. At 1 month, bioluminescence was detected in vivo in the trachea of three of the six animals within the PBS control group, compared with five of the six LPC-treated animals. When examined ex vivo there was weak evidence that LPC improves tracheal Luc expression levels. In the lungs, bioluminescence was detected in vivo in four of the six PBS-treated animals, compared with five of the six LPC-treated animals; however, bioluminescence was present in all lungs when imaged ex vivo. LacZ expression was predominantly observed in the alveolar regions of the lung. hCFTR was detected by qPCR in the lungs of five animals. Basal cells were successfully isolated and expanded from marmoset tracheas, but no LacZ-positive colonies were detected. There was no evidence of an inflammatory response toward the LV vector at 1 month postdelivery, with cytokines remaining at baseline levels. In conclusion, we found weak evidence that LPC conditioning improved gene transduction in the trachea, but not in the marmoset lungs. We also highlight some of the challenges associated with translational lung gene therapy studies in NHPs.
Collapse
Affiliation(s)
- Nigel Farrow
- Robinson Research Institute.,Adelaide Medical School.,Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, Australia
| | - Patricia Cmielewski
- Robinson Research Institute.,Adelaide Medical School.,Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, Australia
| | - Juliette Delhove
- Robinson Research Institute.,Adelaide Medical School.,Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, Australia
| | - Nathan Rout-Pitt
- Robinson Research Institute.,Adelaide Medical School.,Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, Australia
| | - Lewis Vaughan
- South Australian Health and Medical Research Institute, North Adelaide, Australia
| | - Tim Kuchel
- South Australian Health and Medical Research Institute, North Adelaide, Australia
| | - Chris Christou
- South Australian Health and Medical Research Institute, North Adelaide, Australia
| | - John Finnie
- Adelaide Medical School.,SA Pathology, North Adelaide, Australia
| | - Matthew Smith
- Surgical Specialties, University of Adelaide, North Adelaide, Australia
| | - Emma Knight
- South Australian Health and Medical Research Institute, North Adelaide, Australia.,School of Public Health, University of Adelaide, North Adelaide, Australia
| | - Martin Donnelley
- Robinson Research Institute.,Adelaide Medical School.,Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, Australia
| | - David Parsons
- Robinson Research Institute.,Adelaide Medical School.,Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, Australia
| |
Collapse
|