1
|
Wang ZM, Li MK, Yang QL, Duan SX, Lou XY, Yang XY, Liu Y, Zhong YW, Qiao Y, Wang ZS, Sun L, Qian F. Recombinant human adenovirus type 5 promotes anti-tumor immunity via inducing pyroptosis in tumor endothelial cells. Acta Pharmacol Sin 2024; 45:2646-2656. [PMID: 39030309 PMCID: PMC11579340 DOI: 10.1038/s41401-024-01349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024] Open
Abstract
Recombinant human type 5 adenovirus (H101) is an oncolytic virus used to treat nasopharyngeal carcinoma. Owing to the deletion of the E1B-55kD and E3 regions, H101 is believed to selectively inhibit nasopharyngeal carcinoma. Whether H101 inhibits other type of tumors via different mechanisms remains unclear. In this study we investigated the effects of H101 on melanomas. We established B16F10 melanoma xenograft mouse model, and treated the mice with H101 (1 × 108 TCID50) via intratumoral injection for five consecutive days. We found that H101 treatment significantly inhibited B16F10 melanoma growth in the mice. H101 treatment significantly increased the infiltration of CD8+ T cells and reduced the proportion of M2-type macrophages. We demonstrated that H101 exhibited low cytotoxicity against B16F10 cells, but the endothelial cells were more sensitive to H101 treatment. H101 induced endothelial cell pyroptosis in a caspase-1/GSDMD-dependent manner. Furthermore, we showed that the combination of H101 with the immune checkpoint inhibitor PD-L1 antibody (10 mg/kg, i.p., every three days for three times) exerted synergic suppression on B16F10 tumor growth in the mice. This study demonstrates that, in addition to oncolysis, H101 inhibits melanoma growth by promoting anti-tumor immunity and inducing pyroptosis of vascular endothelial cells.
Collapse
Affiliation(s)
- Zhi-Ming Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Meng-Kai Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qing-Ling Yang
- Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, Bengbu, 233030, China
| | - Shi-Xin Duan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin-Yi Lou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin-Yi Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Liu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Wen Zhong
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Qiao
- Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, Bengbu, 233030, China
| | - Zi-Shu Wang
- Department of Medical Oncology, Anhui Province Key Laboratory of Translational Cancer Research, First Affiliated Hospital of Bengbu Medical College, Bengbu Medical University, Bengbu, 233004, China.
| | - Lei Sun
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Feng Qian
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Zhu X, Fan C, Xiong Z, Chen M, Li Z, Tao T, Liu X. Development and application of oncolytic viruses as the nemesis of tumor cells. Front Microbiol 2023; 14:1188526. [PMID: 37440883 PMCID: PMC10335770 DOI: 10.3389/fmicb.2023.1188526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 07/15/2023] Open
Abstract
Viruses and tumors are two pathologies that negatively impact human health, but what occurs when a virus encounters a tumor? A global consensus among cancer patients suggests that surgical resection, chemotherapy, radiotherapy, and other methods are the primary means to combat cancer. However, with the innovation and development of biomedical technology, tumor biotherapy (immunotherapy, molecular targeted therapy, gene therapy, oncolytic virus therapy, etc.) has emerged as an alternative treatment for malignant tumors. Oncolytic viruses possess numerous anti-tumor properties, such as directly lysing tumor cells, activating anti-tumor immune responses, and improving the tumor microenvironment. Compared to traditional immunotherapy, oncolytic virus therapy offers advantages including high killing efficiency, precise targeting, and minimal side effects. Although oncolytic virus (OV) therapy was introduced as a novel approach to tumor treatment in the 19th century, its efficacy was suboptimal, limiting its widespread application. However, since the U.S. Food and Drug Administration (FDA) approved the first OV therapy drug, T-VEC, in 2015, interest in OV has grown significantly. In recent years, oncolytic virus therapy has shown increasingly promising application prospects and has become a major research focus in the field of cancer treatment. This article reviews the development, classification, and research progress of oncolytic viruses, as well as their mechanisms of action, therapeutic methods, and routes of administration.
Collapse
Affiliation(s)
- Xiao Zhu
- Zhejiang Provincial People's Hospital Affiliated to Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
- Department of Biological and Chemical Sciences, New York Institute of Technology—Manhattan Campus, New York, NY, United States
| | - Chenyang Fan
- Department of Clinical Medicine, Medicine and Technology, School of Zunyi Medical University, Zunyi, China
| | - Zhuolong Xiong
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Mingwei Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital(Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Xiuqing Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
3
|
Liu J, Piranlioglu R, Ye F, Shu K, Lei T, Nakashima H. Immunosuppressive cells in oncolytic virotherapy for glioma: challenges and solutions. Front Cell Infect Microbiol 2023; 13:1141034. [PMID: 37234776 PMCID: PMC10206241 DOI: 10.3389/fcimb.2023.1141034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Glioblastoma is a highly aggressive form of brain cancer characterized by the abundance of myeloid lineage cells in the tumor microenvironment. Tumor-associated macrophages and microglia (TAM) and myeloid-derived suppressor cells (MDSCs), play a pivotal role in promoting immune suppression and tumor progression. Oncolytic viruses (OVs) are self-amplifying cytotoxic agents that can stimulate local anti-tumor immune responses and have the potential to suppress immunosuppressive myeloid cells and recruit tumor-infiltrating T lymphocytes (TILs) to the tumor site, leading to an adaptive immune response against tumors. However, the impact of OV therapy on the tumor-resident myeloid population and the subsequent immune responses are not yet fully understood. This review provides an overview of how TAM and MDSC respond to different types of OVs, and combination therapeutics that target the myeloid population to promote anti-tumor immune responses in the glioma microenvironment.
Collapse
Affiliation(s)
- Junfeng Liu
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Raziye Piranlioglu
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Fei Ye
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hiroshi Nakashima
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Awad RM, Breckpot K. Novel technologies for applying immune checkpoint blockers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:1-101. [PMID: 38225100 DOI: 10.1016/bs.ircmb.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Cancer cells develop several ways to subdue the immune system among others via upregulation of inhibitory immune checkpoint (ICP) proteins. These ICPs paralyze immune effector cells and thereby enable unfettered tumor growth. Monoclonal antibodies (mAbs) that block ICPs can prevent immune exhaustion. Due to their outstanding effects, mAbs revolutionized the field of cancer immunotherapy. However, current ICP therapy regimens suffer from issues related to systemic administration of mAbs, including the onset of immune related adverse events, poor pharmacokinetics, limited tumor accessibility and immunogenicity. These drawbacks and new insights on spatiality prompted the exploration of novel administration routes for mAbs for instance peritumoral delivery. Moreover, novel ICP drug classes that are adept to novel delivery technologies were developed to circumvent the drawbacks of mAbs. We therefore review the state-of-the-art and novel delivery strategies of ICP drugs.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
5
|
Zou Y, Yaguchi T. Programmed cell death-1 blockade therapy in melanoma: Resistance mechanisms and combination strategies. Exp Dermatol 2023; 32:264-275. [PMID: 36645031 DOI: 10.1111/exd.14750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023]
Abstract
Melanoma is a highly aggressive tumor derived from melanocytes. In recent years, the incidence and mortality of melanoma have gradually increased, seriously threatening human health. Classic treatments like surgery, chemotherapy, and radiotherapy show very limited efficacy. Due to the high immunogenicity of melanoma cells, immune checkpoint inhibitors have received considerable attention as melanoma treatments. One such therapy is blockade of programmed cell death-1 (PD-1), which is one of the most important negative immune regulators and is mainly expressed on activated T cells. Disruption of the interactions between PD-1 and its ligands, programmed death-ligand 1 (PD-L1) or programmed death-ligand 2 (PD-L2) rejuvenates exhausted T cells and enhances antitumor immunity. Although PD-1 blockade therapy is widely used in melanoma, a substantial proportion of patients still show no response or short durations of remission. Recent researches have focused on revealing the underlying mechanisms for resistance to this treatment and improving its efficacy through combination therapy. Here, we will introduce the resistance mechanisms associated with PD-1 blockade therapy in melanoma and review the combination therapies available.
Collapse
Affiliation(s)
- Yixin Zou
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonori Yaguchi
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Najafi S, Majidpoor J, Mortezaee K. The impact of oncolytic adenoviral therapy on the therapeutic efficacy of PD-1/PD-L1 blockade. Biomed Pharmacother 2023; 161:114436. [PMID: 36841031 DOI: 10.1016/j.biopha.2023.114436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
Immunotherapy has revolutionized treatment of cancer during the last decades. Oncolytic virotherapy has also emerged as a strategy to fight against cancer cells both via lysis of malignant cells and activating immune responses. Accepted as a logical strategy, combination of monoclonal antibodies particularly against the programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) is introduced to improve clinical responses to immune checkpoint inhibitors (ICIs). Accordingly, Talimogene laherparepvec (T-VEC) has received approval for clinical use, while a number of oncolytic Adenoviruses (Ads) are being investigated in clinical trials of malignancies. Combination of oncolytic Ads with PD-1/PD-L1 inhibitors have shown potentials in promoting responses to ICIs, changing the tumor microenvironment, inducing long-term protection against tumor, and promoting survival among mice models of malignancies. Regarding the increasing importance of oncolytic Ads in combination therapy of cancers, in this review we decide to outline recent studies in this field.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran; Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
7
|
Liu W, Chen H, Zhu Z, Liu Z, Ma C, Lee YJ, Bartlett DL, Guo ZS. Ferroptosis Inducer Improves the Efficacy of Oncolytic Virus-Mediated Cancer Immunotherapy. Biomedicines 2022; 10:1425. [PMID: 35740445 PMCID: PMC9219720 DOI: 10.3390/biomedicines10061425] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is a type of programmed cell death dependent on iron and characterized by the accumulation of lipid peroxides. In this study, we explore the combination of a ferroptosis activator with an oncolytic vaccinia virus in tumor models. Erastin induced cell death in hepatoma, colon, and ovarian cancer cells, but not in melanoma cancer cells. Erastin, not the oncolytic vaccinia virus (OVV), induced the expression of key marker genes for ferroptosis in cancer cells. In hepatocellular carcinoma and colon cancer models, either erastin or OVV inhibited tumor growth, but a combination of the two yielded the best therapeutic effects, as indicated by inhibited tumor growth or regression and longer host survival. Immunological analyses indicate that erastin alone had little or no effect on systemic immunity or local immunity in the tumor. However, when combined with OV, erastin enhanced the number of activated dendritic cells and the activity of tumor-infiltrating T lymphocytes as indicated by an increase in IFN-γ+CD8+ and PD-1+CD8+ T cells. These results demonstrate that erastin can exert cytotoxicity on cancer cells via ferroptosis, but has little effect on immune activity by itself. However, when combined with an OVV, erastin promoted antitumoral immunity and efficacy by increasing the number of activated dendritic cells and promoting the activities of tumor specific CD8+ T cells in the tumor.
Collapse
Affiliation(s)
- Weilin Liu
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (W.L.); (H.C.); (Z.Z.); (Z.L.); (C.M.); (Y.J.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Xiangya Medical College, Central South University, Changsha 410013, China
| | - Hongqi Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (W.L.); (H.C.); (Z.Z.); (Z.L.); (C.M.); (Y.J.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Zhi Zhu
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (W.L.); (H.C.); (Z.Z.); (Z.L.); (C.M.); (Y.J.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Zuqiang Liu
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (W.L.); (H.C.); (Z.Z.); (Z.L.); (C.M.); (Y.J.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- AHN-Cancer Institute, Pittsburgh, PA 15212, USA
| | - Congrong Ma
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (W.L.); (H.C.); (Z.Z.); (Z.L.); (C.M.); (Y.J.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Yong J. Lee
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (W.L.); (H.C.); (Z.Z.); (Z.L.); (C.M.); (Y.J.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - David L. Bartlett
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (W.L.); (H.C.); (Z.Z.); (Z.L.); (C.M.); (Y.J.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- AHN-Cancer Institute, Pittsburgh, PA 15212, USA
| | - Zong-Sheng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (W.L.); (H.C.); (Z.Z.); (Z.L.); (C.M.); (Y.J.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14203, USA
| |
Collapse
|
8
|
Li M, Zhu Y, Bai B, Fang J, Yao W, Li Y, Li S, Li X, Jin N, Jiang R. Suppression effect of a dual cancer-specific oncolytic adenovirus on luciferase-labeled human melanoma cells in vitro and in vivo. Cancer Biomark 2021; 32:251-262. [PMID: 34459386 DOI: 10.3233/cbm-203150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND To explore the suppressive effect of Apoptin-loaded oncolytic adenovirus (Ad-VT) on luciferase-labeled human melanoma cells in vitro and in vivo. METHODS The stable luciferase-expressing human melanoma cells A375-luc or M14-luc were obtained by transfecting the plasmid pGL4.51 and selection with G418, followed by luciferase activity, genetic stability and bioluminescence intensity assays. In vitro, the inhibitory effects of Ad-VT on A375-luc or M14-luc were evaluated using the MTS cell proliferation, FITC-Annexin V apoptosis detection, transwell migration, Matrigel invasion and scratch assays. The inhibition pathway in Ad-VT-infected A375-luc and M14-luc cells were analyzed by JC-1 staining and Western-blot detection of mitochondrial apoptosis-related proteins. In vivo, the suppressive effects of Ad-VT on A375-luc or M14-luc were assessed by living imaging technology, tumor volume, bioluminescence intensity, survival curves and immunohistochemical analysis of the tumors from the xenograft tumor model BALB/c nude mice. RESULTS The growth and migration of A375-luc and M14-luc were significantly inhibited by Ad-VT in vitro. The evaluations of A375-luc and M14-luc tumor models in BALB/c nude mice were successfully performed using living imaging technology. Ad-VT had an anti-tumor effect by reducing tumor growth and increasing survival in vivo. Ad-VT significantly changed the mitochondrial membrane potential by triggering the the mitochondrial release of apoptosis-related proteins, AIF (apoptosis inducing factor), ARTS (Apoptosis-Related Proteins), and Cyto-c (cytochrome c) from the mitochondria. CONCLUSION Ad-VT reduced the mitochondrial membrane potential in A375-luc or M14-luc cells and induced the mitochondrial release of AIF, ARTS and Cyto-C. Ad-VT induced apoptosis in A375-luc or M14-luc cells via the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Min Li
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yilong Zhu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, Jilin, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin, China
| | - Bing Bai
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jinbo Fang
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Wei Yao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin, China.,Center for Disease Control and Prevention, Agency for Offices Administration, Central Military Commission, Beijing, China
| | - Yiquan Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, Jilin, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin, China
| | - Shanzhi Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiao Li
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.,Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, Jilin, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin, China
| | - Ningyi Jin
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.,Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, Jilin, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin, China
| | - Rihua Jiang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|