1
|
Järveläinen N, Halonen PJ, Nurro J, Kuivanen A, Pajula J, Tarkia M, Grönman M, Saraste A, Laakkonen J, Toivanen P, Nieminen T, Rissanen TT, Knuuti J, Ylä-Herttuala S. Low dose Adenoviral Vammin gene transfer induces myocardial angiogenesis and increases left ventricular ejection fraction in ischemic porcine heart. Sci Rep 2024; 14:30003. [PMID: 39623213 PMCID: PMC11611887 DOI: 10.1038/s41598-024-81773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
This preliminary study investigated if VEGFR-2 selective adenoviral Vammin (AdVammin) gene therapy could induce angiogenesis and increase perfusion in the healthy porcine myocardium. Also, we determined using a clinically relevant large animal model if AdVammin gene therapy could improve the function of a chronically ischemic heart. Low doses of AdVammin (dose range 2 × 109-2 × 1010 vp) gene transfers were performed into the porcine myocardium using an endovascular injection catheter. AdCMV was used as a control. The porcine model of chronic myocardial ischemia was used in the ischemic studies. The AdVammin enlarged the mean capillary area and stimulated pericyte coverage in the target area 6 days after the gene transfers. Using positron emission tomography 15O-radiowater imaging, we demonstrated that AdVammin gene therapy increased perfusion in healthy myocardium at rest. AdVammin treatment also increased ejection fraction at stress in the ischemic heart, as detected using left ventricular cine angiography. In addition, we demonstrated successful in vivo imaging of enhanced angiogenesis using [68Ga]NODAGA-RGD peptide. However, AdVammin also increased tissue permeability and was associated with significant pericardial fluid accumulation, limiting AdVammin's therapeutic potential and emphasizing the importance of correct dosage.
Collapse
Affiliation(s)
- Niko Järveläinen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, 70211, Kuopio, Finland
| | - Paavo J Halonen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, 70211, Kuopio, Finland
| | - Jussi Nurro
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, 70211, Kuopio, Finland
| | - Antti Kuivanen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, 70211, Kuopio, Finland
| | - Juho Pajula
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, 70211, Kuopio, Finland
| | - Miikka Tarkia
- University of Turku, Turku PET-Center, Turku, Finland
- University of Helsinki, Helsinki, Finland
| | - Maria Grönman
- University of Turku, Turku PET-Center, Turku, Finland
| | - Antti Saraste
- University of Turku, Turku PET-Center, Turku, Finland
| | - Johanna Laakkonen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, 70211, Kuopio, Finland
| | - Pyry Toivanen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, 70211, Kuopio, Finland
| | - Tiina Nieminen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, 70211, Kuopio, Finland
| | - Tuomas T Rissanen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, 70211, Kuopio, Finland
- Heart Center, North Karelia Central Hospital, Joensuu, Finland
| | - Juhani Knuuti
- University of Turku, Turku PET-Center, Turku, Finland
| | - Seppo Ylä-Herttuala
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, 70211, Kuopio, Finland.
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
2
|
Cau MF, Ferraresso F, Seadler M, Badior K, Zhang Y, Ketelboeter LM, Rodriguez GG, Chen T, Ferraresso M, Wietrzny A, Robertson M, Haugen A, Cullis PR, de Moya M, Dyer M, Kastrup CJ. siRNA-mediated reduction of a circulating protein in swine using lipid nanoparticles. Mol Ther Methods Clin Dev 2024; 32:101258. [PMID: 38779336 PMCID: PMC11109470 DOI: 10.1016/j.omtm.2024.101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Genetic manipulation of animal models is a fundamental research tool in biology and medicine but is challenging in large animals. In rodents, models can be readily developed by knocking out genes in embryonic stem cells or by knocking down genes through in vivo delivery of nucleic acids. Swine are a preferred animal model for studying the cardiovascular and immune systems, but there are limited strategies for genetic manipulation. Lipid nanoparticles (LNPs) efficiently deliver small interfering RNA (siRNA) to knock down circulating proteins, but swine are sensitive to LNP-induced complement activation-related pseudoallergy (CARPA). We hypothesized that appropriately administering optimized siRNA-LNPs could knock down circulating levels of plasminogen, a blood protein synthesized in the liver. siRNA-LNPs against plasminogen (siPLG) reduced plasma plasminogen protein and hepatic plasminogen mRNA levels to below 5% of baseline values. Functional assays showed that reducing plasminogen levels modulated systemic blood coagulation. Clinical signs of CARPA were not observed, and occasional mild and transient hepatotoxicity was present in siPLG-treated animals at 5 h post-infusion, which returned to baseline by 7 days. These findings advance siRNA-LNPs in swine models, enabling genetic engineering of blood and hepatic proteins, which can likely expand to proteins in other tissues in the future.
Collapse
Affiliation(s)
- Massimo F. Cau
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Francesca Ferraresso
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Monica Seadler
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Youjie Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | | | | | - Taylor Chen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | | | | | - Madelaine Robertson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amber Haugen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Pieter R. Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marc de Moya
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mitchell Dyer
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Division of Vascular and Endovascular Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christian J. Kastrup
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Departments of Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
Al-Saadi J, Waldén M, Sandell M, Sohlmér J, Grankvist R, Friberger I, Andersson A, Carlsten M, Chien K, Lundberg J, Witman N, Holmin S. Endovascular transplantation of mRNA-enhanced mesenchymal stromal cells results in superior therapeutic protein expression in swine heart. Mol Ther Methods Clin Dev 2024; 32:101225. [PMID: 38516693 PMCID: PMC10950887 DOI: 10.1016/j.omtm.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
Heart failure has a poor prognosis and no curative treatment exists. Clinical trials are investigating gene- and cell-based therapies to improve cardiac function. The safe and efficient delivery of these therapies to solid organs is challenging. Herein, we demonstrate the feasibility of using an endovascular intramyocardial delivery approach to safely administer mRNA drug products and perform cell transplantation procedures in swine. Using a trans-vessel wall (TW) device, we delivered chemically modified mRNAs (modRNA) and mRNA-enhanced mesenchymal stromal cells expressing vascular endothelial growth factor A (VEGF-A) directly to the heart. We monitored and mapped the cellular distribution, protein expression, and safety tolerability of such an approach. The delivery of modRNA-enhanced cells via the TW device with different flow rates and cell concentrations marginally affect cell viability and protein expression in situ. Implanted cells were found within the myocardium for at least 3 days following administration, without the use of immunomodulation and minimal impact on tissue integrity. Finally, we could increase the protein expression of VEGF-A over 500-fold in the heart using a cell-mediated modRNA delivery system compared with modRNA delivered in saline solution. Ultimately, this method paves the way for future research to pioneer new treatments for cardiac disease.
Collapse
Affiliation(s)
- Jonathan Al-Saadi
- Department of Clinical Neuroscience, Karolinska Institute, Tomtebodavägen 18A, 171 65 Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, 171 64 Stockholm, Sweden
- MedTechLabs, Stockholm, Sweden
| | - Mathias Waldén
- Department of Clinical Neuroscience, Karolinska Institute, Tomtebodavägen 18A, 171 65 Stockholm, Sweden
| | - Mikael Sandell
- Department of Clinical Neuroscience, Karolinska Institute, Tomtebodavägen 18A, 171 65 Stockholm, Sweden
- MedTechLabs, Stockholm, Sweden
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, 114 28 Stockholm, Sweden
| | - Jesper Sohlmér
- Department of Cell and Molecular Biology, Karolinska Institute, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Rikard Grankvist
- Department of Clinical Neuroscience, Karolinska Institute, Tomtebodavägen 18A, 171 65 Stockholm, Sweden
| | - Ida Friberger
- Department of Clinical Neuroscience, Karolinska Institute, Tomtebodavägen 18A, 171 65 Stockholm, Sweden
| | - Agneta Andersson
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Carlsten
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Cell Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Kenneth Chien
- Department of Cell and Molecular Biology, Karolinska Institute, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Johan Lundberg
- Department of Clinical Neuroscience, Karolinska Institute, Tomtebodavägen 18A, 171 65 Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, 171 64 Stockholm, Sweden
- MedTechLabs, Stockholm, Sweden
| | - Nevin Witman
- Department of Clinical Neuroscience, Karolinska Institute, Tomtebodavägen 18A, 171 65 Stockholm, Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institute, Tomtebodavägen 18A, 171 65 Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, 171 64 Stockholm, Sweden
- MedTechLabs, Stockholm, Sweden
| |
Collapse
|
4
|
Updates on Cardiac Gene Therapy Research and Methods: Overview of Cardiac Gene Therapy. Methods Mol Biol 2022; 2573:3-10. [PMID: 36040582 DOI: 10.1007/978-1-0716-2707-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Gene therapy has made a significant progress in clinical translation over the past few years with several gene therapy products currently approved or anticipating approval for clinical use. Cardiac gene therapy lags behind that of other areas of diseases, with no application of cardiac gene therapy yet approved for clinical use. However, several clinical trials for gene therapy targeting the heart are underway, and innovative research studies are being conducted to close the gap. The second edition of Cardiac Gene Therapy in Methods in Molecular Biology provides protocols for cutting-edge methodologies used in these studies. In this chapter, we discuss recent updates on cardiac gene therapy studies and provide an overview of the chapters in the book.
Collapse
|
5
|
Siimes S, Järveläinen N, Korpela H, Ylä-Herttuala S. Endocardial Gene Delivery Using NOGA Catheter System. Methods Mol Biol 2022; 2573:179-187. [PMID: 36040595 DOI: 10.1007/978-1-0716-2707-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
NOGA/MyoStar system uses low magnetic fields and endomyocardial electrical parameters, allowing precise endomyocardial injections of therapeutic agents to ischemic yet viable myocardium which is most likely to respond to the treatment. Preclinical and clinical studies have shown that NOGA/MyoStar guided intramyocardial injections are safe, feasible and a minimally invasive way to deliver gene therapy to the heart. Here we describe how to perform electroanatomical mapping and injections to hibernating myocardium in the preclinical studies.
Collapse
Affiliation(s)
- Satu Siimes
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Niko Järveläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henna Korpela
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland. .,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|