1
|
Shi Y, Shi M, Wang Y, You J. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct Target Ther 2024; 9:322. [PMID: 39543114 PMCID: PMC11564800 DOI: 10.1038/s41392-024-02002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 11/17/2024] Open
Abstract
In the last decade, messenger ribonucleic acid (mRNA)-based drugs have gained great interest in both immunotherapy and non-immunogenic applications. This surge in interest can be largely attributed to the demonstration of distinct advantages offered by various mRNA molecules, alongside the rapid advancements in nucleic acid delivery systems. It is noteworthy that the immunogenicity of mRNA drugs presents a double-edged sword. In the context of immunotherapy, extra supplementation of adjuvant is generally required for induction of robust immune responses. Conversely, in non-immunotherapeutic scenarios, immune activation is unwanted considering the host tolerability and high expression demand for mRNA-encoded functional proteins. Herein, mainly focused on the linear non-replicating mRNA, we overview the preclinical and clinical progress and prospects of mRNA medicines encompassing vaccines and other therapeutics. We also highlight the importance of focusing on the host-specific variations, including age, gender, pathological condition, and concurrent medication of individual patient, for maximized efficacy and safety upon mRNA administration. Furthermore, we deliberate on the potential challenges that mRNA drugs may encounter in the realm of disease treatment, the current endeavors of improvement, as well as the application prospects for future advancements. Overall, this review aims to present a comprehensive understanding of mRNA-based therapies while illuminating the prospective development and clinical application of mRNA drugs.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China
| | - Meixing Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, P. R. China.
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, P. R. China.
- Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, P. R. China.
| |
Collapse
|
2
|
Guo X, Chen K, Ji L, Wang S, Ye X, Xu L, Feng L. Ultrasound-targeted microbubble technology facilitates SAHH gene delivery to treat diabetic cardiomyopathy by activating AMPK pathway. iScience 2024; 27:108852. [PMID: 38303706 PMCID: PMC10831940 DOI: 10.1016/j.isci.2024.108852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a cardiovascular complication with no known cure. In this study, we evaluated the combination of ultrasound-targeted microbubble destruction (UTMD) and cationic microbubbles (CMBs) for cardiac S-adenosyl homocysteine hydrolase (SAHH) gene transfection as potential DCM therapy. Models of high glucose/fat (HG/HF)-induced H9C2 cells and streptozotocin-induced DCM rats were established. Ultrasound-mediated SAHH delivery using CMBs was a safe and noninvasive approach for spatially localized drug administration both in vitro and in vivo. Notably, SAHH overexpression increased cell viability and antioxidative stress and inhibited apoptosis of HG/HF-induced H9C2 cells. Likewise, UTMD-mediated SAHH delivery attenuated apoptosis, oxidative stress, cardiac fibrosis, and myocardial dysfunction in DCM rats. Activation of the AMPK/FOXO3/SIRT3 signaling pathway may be a key mechanism mediating the role of SAHH in regulating myocardial injury. Thus, UTMD-mediated SAHH transfection may be an important advancement in cardiac gene therapy for restoring ventricular function after DCM.
Collapse
Affiliation(s)
- Xiaohui Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Harbin Medical University, Harbin 150081, P.R. China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, P.R. China
| | - Kegong Chen
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, P.R. China
| | - Lin Ji
- Department of Orthopedics, The First Hospital of Harbin, Harbin 150010, P.R. China
| | - Shanjie Wang
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, P.R. China
| | - Xiangmei Ye
- Department of Clinical Laboratory, First Affiliated Hospital of Harbin Medical University, Harbin 150081, P.R. China
| | - Liang Xu
- Department of Cardiology, The Second Hospital of Harbin, Harbin 150056, P.R. China
| | - Leiguang Feng
- Department of Clinical Laboratory, First Affiliated Hospital of Harbin Medical University, Harbin 150081, P.R. China
| |
Collapse
|
3
|
Liu Y, Zheng Z, Han J, Lin C, Liu C, Ma Y, Zhao Y. Delivery of sPD1 gene by anti-CD133 antibody conjugated microbubbles combined with ultrasound for the treatment of cervical cancer in mice. Toxicol Appl Pharmacol 2023; 474:116605. [PMID: 37355104 DOI: 10.1016/j.taap.2023.116605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
To explore new therapeutic options for cervical cancer, the inhibitory effect on cervical cancer of targeted CD133-loaded sPD1 gene microbubbles (MBs) combined with low-frequency ultrasound was studied and its mechanism was explored. We prepared microbubbles conjugated with anti-CD133 antibody to deliver the sPD1 gene and determined concentration, particle size, and potentials of MBs. In addition, we verified that CD133 targeted-MBs could specifically bind to U14 cervical cancer cells in vitro. A mouse model of subcutaneous xenograft cervical cancer was established and mice were divided into a control group, an non-targeted microbubble group, a CD133-MBs group, an sPD1-MBs group and a CD133/sPD1-MBs group. Compared with the control group, tumor growth was inhibited in each group, with the CD133/sPD1 group showing the strongest inhibitory effect after treatment. The tumor volume and weight inhibition rates in the CD133/sPD1-MBs group were 78.01% and 72.25% respectively, which were statistically different from the other groups (P < 0.05), and HE staining and TUNEL immunofluorescence showed necrosis and apoptosis in tumor tissue. Flow cytometry, lactate dehydrogenase, and indirect immunofluorescence experiments showed that T lymphocytes were activated and a large number of CD8-positive T cells infiltrated the tumor tissue after treatment, with the CD133/sPD1-MBs group showing the most prominent effects (P < 0.05). The combination of ultrasound with anti- CD133 antibody-conjugated microbubbles loaded with the sPD1 gene can inhibit the growth of cervical cancer, suggesting that the immunosuppressive microenvironment of the tumor is improved after treatment.
Collapse
Affiliation(s)
- Yun Liu
- Department of Ultrasound Imaging, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443008, China
| | - Zhiwei Zheng
- Medical College of China Three Gorges University, Yichang 443002, China; Department of Ultrasound, Wuhan No.1 Hospital, Wuhan 430022, China
| | - Jiaxuan Han
- Medical College of China Three Gorges University, Yichang 443002, China
| | - Chen Lin
- Medical College of China Three Gorges University, Yichang 443002, China
| | - Chaoqi Liu
- Medical College of China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of tumor microenvironment and immunotherapy, Yichang 334002, China
| | - Yao Ma
- Department of Ultrasound Imaging, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443008, China.
| | - Yun Zhao
- Medical College of China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of tumor microenvironment and immunotherapy, Yichang 334002, China.
| |
Collapse
|
4
|
Kim K, Lee J, Park MH. Microbubble Delivery Platform for Ultrasound-Mediated Therapy in Brain Cancers. Pharmaceutics 2023; 15:pharmaceutics15020698. [PMID: 36840020 PMCID: PMC9959315 DOI: 10.3390/pharmaceutics15020698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The blood-brain barrier (BBB) is one of the most selective endothelial barriers that protect the brain and maintains homeostasis in neural microenvironments. This barrier restricts the passage of molecules into the brain, except for gaseous or extremely small hydrophobic molecules. Thus, the BBB hinders the delivery of drugs with large molecular weights for the treatment of brain cancers. Various methods have been used to deliver drugs to the brain by circumventing the BBB; however, they have limitations such as drug diversity and low delivery efficiency. To overcome this challenge, microbubbles (MBs)-based drug delivery systems have garnered a lot of interest in recent years. MBs are widely used as contrast agents and are recently being researched as a vehicle for delivering drugs, proteins, and gene complexes. The MBs are 1-10 μm in size and consist of a gas core and an organic shell, which cause physical changes, such as bubble expansion, contraction, vibration, and collapse, in response to ultrasound. The physical changes in the MBs and the resulting energy lead to biological changes in the BBB and cause the drug to penetrate it, thus enhancing the therapeutic effect. Particularly, this review describes a state-of-the-art strategy for fabricating MB-based delivery platforms and their use with ultrasound in brain cancer therapy.
Collapse
Affiliation(s)
- Kibeom Kim
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jungmin Lee
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea
| | - Myoung-Hwan Park
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea
- N to B Co., Ltd., Seoul 01795, Republic of Korea
- Correspondence:
| |
Collapse
|