1
|
Jiang Z, Zhang H, Liu C, Yin J, Tong S, Lv J, Wei S, Wu S. β3GnT8 Promotes Colorectal Cancer Cells Invasion via CD147/MMP2/Galectin3 Axis. Front Physiol 2018; 9:588. [PMID: 29875690 PMCID: PMC5974207 DOI: 10.3389/fphys.2018.00588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 05/02/2018] [Indexed: 01/10/2023] Open
Abstract
β1,3-N-acetylglucosaminyltransferase (β3GnT8) and β3GnT2 are key enzymes that catalyzes the formation of polylactosamine glycan structures by transferring GlcNAc to tetra-antennary β1-6-branched N-glycan and it also has an important effect on the progression of various types of human cancer. They have been reported to participate in tumor invasion and metastasis by regulating the expression of matrix metalloproteinases (MMPs), CD147, and polylactosamine. However, whether β3GnT8 and β3GnT2 play a role in colorectal cancer and, if so, the underlying mechanisms remain unclear. In our study, we detected the expression of β3GnT8, CD147, MMP2, and galectin3 by immunohistochemistry on 90 paraffin-embedded slices. And β3GnT8, CD147, MMP2, and galectin3 were over-expressed in colorectal cancer tissues. We found that overexpression of β3GnT8 and β3GnT2 promoted invasion of colorectal cancer cells, whereas knockdown of β3GnT8 and β3GnT2 inhibited the invasive activity. Mechanistically, β3GnT8 and β3GnT2 regulated the expression of HG-CD147 and the level of polylactosamines in colorectal cancer cells. Together, these results illustrate that the novel role and the molecular mechanism of β3GnT8 and β3GnT2 in promotion of colorectal cancer invasion. These results suggest that the potential use of β3GnT8 as a tumor target for the therapy of colorectal cancer.
Collapse
Affiliation(s)
- Zhi Jiang
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, China
| | - Huan Zhang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.,First People's Hospital of Changshu City, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Chunliang Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, China.,Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Yin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shan Tong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Junxing Lv
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, China
| | - Shaohua Wei
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Liu C, Qiu H, Lin D, Wang Z, Shi N, Tan Z, Liu J, Jiang Z, Wu S. c-Jun-dependent β3GnT8 promotes tumorigenesis and metastasis of hepatocellular carcinoma by inducing CD147 glycosylation and altering N-glycan patterns. Oncotarget 2018; 9:18327-18340. [PMID: 29719608 PMCID: PMC5915075 DOI: 10.18632/oncotarget.24192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022] Open
Abstract
β3GnT8, a key polylactosamine synthase, plays a vital role in progression of various types of human cancer. The role of β3GnT8 in hepatocellular carcinoma (HCC) and the underlying mechanisms, however, remain largely unknown. In this study, we found that β3GnT8 and polylactosamine were highly expressed in HCC tissues compared with those in adjacent paracancer tissues. Overexpression of β3GnT8 promoted while knockdown of β3GnT8 inhibited HCC cell invasion and migration in vitro. Importantly, enhanced tumorigenesis was observed in nude mice inoculated with β3GnT8-overexpressing HCC cells, suggesting that β3GnT8 is important for HCC development in vitro and in vivo. Mechanistically, β3GnT8 modulated the N-glycosylation patterns of CD147 and altered the polylactosamine structures in HCC cells by physically interacting with CD147. In addition, our data showed the c-Jun could directly bind to the promoter of β3GnT8 gene and regulate β3GnT8 expression. β3GnT8 regulated HCC cell invasion and migration in a C-Jun-dependent manner. Collectively, our study identified β3GnT8 as a novel regulator for HCC invasion and tumorigenesis. Targeting β3GnT8 may be a potential therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Chunliang Liu
- Department of Biochemistry and Molecular Biology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Hao Qiu
- Department of Biochemistry and Molecular Biology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Dandan Lin
- Department of Biochemistry and Molecular Biology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zerong Wang
- Department of Infectious Diseases, The Fifth People's Hospital of Suzhou, Suzhou, Jiangsu 215007, P.R. China
| | - Ning Shi
- Department of Physiology and Pharmacology, University of Georgia, Athens 30602 GA, USA
| | - Zengqi Tan
- College of Life Science, Northwest University, Xian, Shanxi 710069, P.R. China
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhi Jiang
- Department of Biochemistry and Molecular Biology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
3
|
Liu C, Qiu H, Yu M, Wang Z, Yuan Y, Jiang Z, Shao X, Hua D, Liu M, Wu S. c-Jun-mediated β-1,3-N-acetylglucosaminyltransferase 8 expression: A novel mechanism regulating the invasion and metastasis of colorectal carcinoma cells. Oncol Lett 2017; 14:3722-3728. [PMID: 28927138 DOI: 10.3892/ol.2017.6624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 02/03/2017] [Indexed: 11/05/2022] Open
Abstract
β-1,3-N-Acetylglucosaminyltransferase 8 (β3GnT8) is a key enzyme that catalyzes the formation of polylactosamine glycan structures by transferring GlcNAc to tetra-antennary β1-6-branched N-glycans, and it has been reported to participate in tumor invasion and metastasis by regulating the expression of matrix metalloproteinases (MMPs), cluster of differentiation 147 (CD147) and polylactosamine. By contrast, the role of transcription factor c-Jun in cell cycle progression has been well established. c-Jun has an important role in tumor cell invasion and metastasis. However, the precise molecular mechanisms by which c-Jun regulates these processes in colorectal carcinoma cells are not fully elucidated. In the present study, c-Jun had a significant effect on the invasive and migratory abilities of SW480 and LoVo cells. Additionally, overexpression of c-Jun was able to increase the expression of β3GnT8, MMPs, CD147 and polylactosamine. Similarly, knockdown of c-Jun was able to decrease the expression of β3GnT8, MMPs, CD147 and polylactosamine. These results suggest that c-Jun is able to regulate colorectal carcinoma cell invasion and metastasis via β3GnT8. A chromatin immunoprecipitation assay indicated that c-Jun is able to bind directly to the promoter regions of β3GnT8 in SW480 and LoVo cells. This leads to transcriptional activation of β3GnT8, which in turn regulates the expression of tumor invasion and metastasis-associated genes. The results of the present study demonstrate a novel mechanism underlying colorectal carcinoma cell invasion and metastasis, where β3GnT8 is transcriptionally activated via c-Jun binding to its promoter.
Collapse
Affiliation(s)
- Chunliang Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Hao Qiu
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Meiyun Yu
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zerong Wang
- The Fifth People's Hospital of Suzhou, Suzhou, Jiangsu 215007, P.R. China
| | - Yaqin Yuan
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhi Jiang
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xuejun Shao
- The Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Dong Hua
- The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, P.R. China
| | - Min Liu
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
4
|
Shen L, Dong X, Yu M, Luo Z, Wu S. β3GnT8 Promotes Gastric Cancer Invasion by Regulating the Glycosylation of CD147. J Cancer 2017; 8:314-322. [PMID: 28243336 PMCID: PMC5327381 DOI: 10.7150/jca.16526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022] Open
Abstract
β1, 3-N-acetylglucosminyltransferase 8(β3GnT8) synthesizes a unique cabohydrate structure known as polylactosamine, and plays a vital role in progression of various human cancer types. However, its involvement in gastric cancer remains unclear. In this study, we analyzed the expression and clinical significance of β3GnT8 by Western blot in 6 paired fresh gastric cancer tissues, noncancerous tissues and immunohistochemistry on 110 paraffin-embedded slices. β3GnT8 was found to be over-expressed in gastric cancer tissues, which correlated with lymph node metastasis and TNM stage. Forced the expression of β3GnT8 promoted migration and invasion of gastric cancer cells, whereas β3GnT8 knockdown led to the opposite results. Further studies showed that the regulated β3GnT8 could convert the heterogeneous N-glycosylated forms of CD147 and change the polylactosamine structures carried on CD147. In addition, our data suggested the annexin A2 (ANXA2) to be an essential interaction partner of β3GnT8 during the process of CD147 glycosylation. Collectively, these results provide a novel molecular mechanism for β3GnT8 in promotion of gastric cancer invasion and metastasis. Targeting β3GnT8 could serve as a new strategy for future gastric cancer therapy.
Collapse
Affiliation(s)
- Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Department of Biochemistry and Molecular Biology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaoxia Dong
- Department of pharmacology, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Meiyun Yu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Institute of Cancer Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
5
|
Jiang Z, Liu Z, Zou S, Ni J, Shen L, Zhou Y, Hua D, Wu S. Transcription factor c-jun regulates β3Gn-T8 expression in gastric cancer cell line SGC-7901. Oncol Rep 2016; 36:1353-60. [PMID: 27459970 DOI: 10.3892/or.2016.4959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/16/2016] [Indexed: 11/05/2022] Open
Abstract
Aberrant glycosylation, a common feature of malignant alteration, is partly due to changes in the expression of glycosyltransferases, including β1,3-N-acetyl-glucosaminyltrans-ferase 8 (β3Gn‑T8), which synthesizes poly-N-acetyllactosamine (poly-LacNAc) chains on β1,6 branched N‑glycans. Although the role of β3Gn‑T8 in tumors has been reported, the regulation of β3Gn‑T8 expression, however, is still poorly understood. In the present study, we used three online bioinformatic software tools to identify multiple c‑jun binding sites in the promoter of the β3Gn‑T8 gene. Using luciferase reporter assay, chromatin immunoprecipitation (ChIP) analysis, RT‑PCR and western blot analysis, we revealed that c‑jun could bind to and activate the β3Gn‑T8 promoter, thus upregulating β3Gn‑T8 expression. This was also confirmed by changes in β3Gn‑T8 activity as demonstrated by flow cytometry, immunofluorescence and lectin blot analysis using LEA lectin. Moreover, expression of glycoprotein HG‑CD147, the substrate of β3Gn‑T8, was also regulated by c‑jun. In addition, c‑jun and β3Gn‑T8 were more highly expressed in the gastric cancer tissues when compared to these levels in the adjacent non‑tumor gastric tissues, and β3Gn‑T8 expression was positively correlated with c‑jun expression. These results suggest that c‑jun plays a significant role in regulating the expression of β3Gn‑T8 in the SGC‑7901 cell line and may be involved in the development of malignancy via the activity of β3Gn‑T8.
Collapse
Affiliation(s)
- Zhi Jiang
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhenhua Liu
- Department of Inspection, Suzhou Health College, Suzhou, Jiangsu 215001, P.R. China
| | - Shitao Zou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu 215001, P.R. China
| | - Jianlong Ni
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Li Shen
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yinghui Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Dong Hua
- The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, P.R. China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
6
|
Shen L, Yu M, Xu X, Gao L, Ni J, Luo Z, Wu S. Knockdown of β3GnT8 reverses 5-fluorouracil resistance in human colorectal cancer cells via inhibition the biosynthesis of polylactosamine-type N-glycans. Int J Oncol 2014; 45:2560-8. [PMID: 25269761 DOI: 10.3892/ijo.2014.2672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/19/2014] [Indexed: 11/05/2022] Open
Abstract
Aberrant glycosylation is known to be associated with cancer chemoresistance. β-1,3-N-acetyl-glucosaminyltransferase (β3GnT)8, which synthesizes polylactosamine on β1-6 branched N-glycans, is dramatically upregulated in colorectal cancer (CRC). 5-Fluorouracil (5-FU) resistance remains a major obstacle to the chemotherapy of CRC. However, little is known with regard to the correlation between 5‑FU resistance and the expression of β3GnT8 in CRC. In this study, a 5-FU‑resistant cell line (SW620/5-FU) was generated, and 50% inhibition concentration (IC50) of 5-FU was determined by MTT assay. Flow cytometry and lectin blot analysis were performed to detect the alteration of polylactosamine structures. Quantitative RT-‑PCR and western blot analysis were used to identify and evaluate candidate genes involved in the synthesis of polylactosamine in SW620/5-FU cells. We found polylactosamine chains were significantly increased in SW620/5-FU cells. Inhibition of the biosynthesis of polylactosamine by 3'-azidothymidine (AZT) was able to reduce 5-FU tolerance. Further studies showed that β3GnT8 expression was also upregulated in 5-FU‑resistant cancer cells, and knockdown of β3GnT8 by RNA interference reversed 5-FU resistance through, at least partly, by suppressing the formation of polylactosamine. In conclusion, the alteration of β3GnT8 in CRC cells correlates with tumor sensitivity to the chemotherapeutic drug and has significant implication for the development of new treatment strategies.
Collapse
Affiliation(s)
- Li Shen
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Meiyun Yu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xu Xu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Liping Gao
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jianlong Ni
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
7
|
Liu J, Shen L, Yang L, Hu S, Xu L, Wu S. High expression of β3GnT8 is associated with the metastatic potential of human glioma. Int J Mol Med 2014; 33:1459-68. [PMID: 24715095 PMCID: PMC4055349 DOI: 10.3892/ijmm.2014.1736] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 03/31/2014] [Indexed: 11/06/2022] Open
Abstract
Changes in glycosylation due to specific alterations of glycosyltransferase activity have been shown in various tumor cells, including human glioma cells. β1,3-N‑acetylglucosaminyltransferase-8 (β3GnT8) catalyzes the formation of polylactosamine on β1-6 branched N-glycans. Upregulated expression of β3GnT8 was described in some tumors, but its precise role in regulating glioma invasion and metastasis remains unclear. In this study, we report on an investigation of the expression of β3GnT8 in human glioma by immunohistochemical analysis. Out of 42 glioma tissues, 37 (88.1%) showed positive β3GnT8 expression, which was significantly higher than that in normal brain tissues (P<0.001). Additionally, the level of β3GnT8 increased with increased pathological grade of gliomas. Silencing of β3GnT8 in U251 glioma cells attenuated the formation of polylactosamine, and decreased cell proliferation, migration and metastatic ability in vitro and in vivo. By contrast, the overexpression of β3GnT8 in U251 cells exhibited enhanced metastatic potential. A positive correlation between β3GnT8 and matrix metalloproteinase-2 (MMP-2) expression in U251 cells was also observed. The results demonstrated a critical role of β3GnT8 in the metastatic potential of glioma cells, indicating that manipulating β3GnT8 expression may have therapeutic potential for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Jun Liu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Li Shen
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lingyan Yang
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shuijun Hu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lan Xu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
8
|
Gao L, Shen L, Yu M, Ni J, Dong X, Zhou Y, Wu S. Colon cancer cells treated with 5‑fluorouracil exhibit changes in polylactosamine‑type N‑glycans. Mol Med Rep 2014; 9:1697-702. [PMID: 24604396 DOI: 10.3892/mmr.2014.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 02/03/2014] [Indexed: 11/06/2022] Open
Abstract
5-Fluorouracil (5-FU) is the major chemotherapeutic agent for the treatment of colorectal carcinoma, which were found to have N-glycans containing polylactosamine on the cancer cell surface. Alterations in the expression and structure of polylactosamine glycans are associated with cellular differentiation and oncogenesis. However, little is known with regard to the correlation between the levels of polylactosamine expressed in colon cancer cells and the anticancer effect of 5-FU. In the present study, SW620 cells were treated with the half maximal inhibitory concentration (IC50; determined by MTT-assay) of 5-FU. Hoechst 33258 staining and flow cytometric analysis indicated that 5-FU administration resulted in apoptosis in SW620 cells. An increased percentage of cells in S phase was also observed among the SW620 cells treated with 5-FU. Under the same experimental conditions, a decrease in the 5-FU‑induced inhibition of polylactosamine glycans was recorded. However, an increase in the activity of alkaline phosphatase was also observed. Furthermore, pretreatment of the SW620 cells with 5-FU inhibited the expression of β1,3-N-acetylglucosaminyltransferase-8 (β3Gn-T8) and cluster of differentiation (CD)147 in a time-dependent manner. Overall, changes in glycosylation were associated with the anticancer effect of 5-FU in the colon cancer cells. In conclusion, polylactosamine may be a useful target for the identification of substances with anticancer activity.
Collapse
Affiliation(s)
- Liping Gao
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Li Shen
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Meiyun Yu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jianlong Ni
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xiaoxia Dong
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yinghui Zhou
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
9
|
Hua D, Qin F, Shen L, Jiang Z, Zou ST, Xu L, Cheng ZH, Wu SL. β3GnT8 regulates laryngeal carcinoma cell proliferation via targeting MMPs/TIMPs and TGF-β1. Asian Pac J Cancer Prev 2013; 13:2087-93. [PMID: 22901175 DOI: 10.7314/apjcp.2012.13.5.2087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Previous evidence showed β1, 3-N-acetylglucosaminyltransferase 8 (β3GnT8), which can extend polylactosamine on N-glycans, to be highly expressed in some cancer cell lines and tissues, indicating roles in tumorigenesis. However, so far, the function of β3GnT8 in laryngeal carcinoma has not been characterized. To test any contribution, Hep-2 cells were stably transfected with sense or interference vectors to establish cell lines that overexpressed or were deficient in β3GnT8. Here we showed that cell proliferation was increased in β3GnT8 overexpressed cells but decreased in β3GnT8 knockdown cells using MTT. Furthermore, we demonstrated that change in β3GnT8 expression had significant effects on tumor growth in nude mice.We further provided data suggesting that overexpression of β3GnT8 enhanced the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) at both the mRNA and protein levels, associated with shedding of tissue inhibitors of metalloproteinase TIMP-2. In addition, it caused increased production of transforming growth factor beta 1 (TGF-β1), whereas β3GnT8 gene knockdown caused the reverse effect. The results may indicate a novel mechanism by which effects of β3GnT8 in regulating cellular proliferation are mediated, at least in partvia targeting MMPs/TIMPs and TGF-β1 in laryngeal carcinoma Hep-2 cells. The finding may lay a foundation for further investigations into the β3GnT8 as a potential target for therapy of laryngeal carcinoma.
Collapse
Affiliation(s)
- Dong Hua
- The Fourth Affiliated Hospital of Soochow University, Wuxi, China
| | | | | | | | | | | | | | | |
Collapse
|