1
|
Gaussmann S, Peschel R, Ott J, Zak KM, Sastre J, Delhommel F, Popowicz GM, Boekhoven J, Schliebs W, Erdmann R, Sattler M. Modulation of peroxisomal import by the PEX13 SH3 domain and a proximal FxxxF binding motif. Nat Commun 2024; 15:3317. [PMID: 38632234 PMCID: PMC11024197 DOI: 10.1038/s41467-024-47605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Import of proteins into peroxisomes depends on PEX5, PEX13 and PEX14. By combining biochemical methods and structural biology, we show that the C-terminal SH3 domain of PEX13 mediates intramolecular interactions with a proximal FxxxF motif. The SH3 domain also binds WxxxF peptide motifs in the import receptor PEX5, demonstrating evolutionary conservation of such interactions from yeast to human. Strikingly, intramolecular interaction of the PEX13 FxxxF motif regulates binding of PEX5 WxxxF/Y motifs to the PEX13 SH3 domain. Crystal structures reveal how FxxxF and WxxxF/Y motifs are recognized by a non-canonical surface on the SH3 domain. The PEX13 FxxxF motif also mediates binding to PEX14. Surprisingly, the potential PxxP binding surface of the SH3 domain does not recognize PEX14 PxxP motifs, distinct from its yeast ortholog. Our data show that the dynamic network of PEX13 interactions with PEX5 and PEX14, mediated by diaromatic peptide motifs, modulates peroxisomal matrix import.
Collapse
Affiliation(s)
- Stefan Gaussmann
- Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstr. 4, 85747, Garching, Germany
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Rebecca Peschel
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University Bochum, 44780, Bochum, Germany
| | - Julia Ott
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University Bochum, 44780, Bochum, Germany
| | - Krzysztof M Zak
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Judit Sastre
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Florent Delhommel
- Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstr. 4, 85747, Garching, Germany
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Grzegorz M Popowicz
- Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstr. 4, 85747, Garching, Germany
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Job Boekhoven
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Wolfgang Schliebs
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University Bochum, 44780, Bochum, Germany
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University Bochum, 44780, Bochum, Germany.
| | - Michael Sattler
- Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstr. 4, 85747, Garching, Germany.
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
2
|
Büttner M, Lagerholm CB, Waithe D, Galiani S, Schliebs W, Erdmann R, Eggeling C, Reglinski K. Challenges of Using Expansion Microscopy for Super-resolved Imaging of Cellular Organelles. Chembiochem 2021; 22:686-693. [PMID: 33049107 PMCID: PMC7894168 DOI: 10.1002/cbic.202000571] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/07/2020] [Indexed: 12/26/2022]
Abstract
Expansion microscopy (ExM) has been successfully used to improve the spatial resolution when imaging tissues by optical microscopy. In ExM, proteins of a fixed sample are crosslinked to a swellable acrylamide gel, which expands when incubated in water. Therefore, ExM allows enlarged subcellular structures to be resolved that would otherwise be hidden to standard confocal microscopy. Herein, we aim to validate ExM for the study of peroxisomes, mitochondria, nuclei and the plasma membrane. Upon comparison of the expansion factors of these cellular compartments in HEK293 cells within the same gel, we found significant differences, of a factor of above 2, in expansion factors. For peroxisomes, the expansion factor differed even between peroxisomal membrane and matrix marker; this underlines the need for a thorough validation of expansion factors of this powerful technique. We further give an overview of possible quantification methods for the determination of expansion factors of intracellular organelles, and we highlight some potentials and challenges.
Collapse
Affiliation(s)
- Maximilian Büttner
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular MedicineUniversity of Oxford Headley WayOxfordOX3 9DSUK
- Institute for Anatomy and Cell BiologyMartin-Luther-University Halle-WittenbergGroße Steinstraße 5206108HalleGermany
| | - Christoffer B. Lagerholm
- Wolfson Imaging Centre MRC Weatherall Institute of Molecular MedicineUniversity of Oxford Headley WayOxfordOX3 9DSUK
| | - Dominic Waithe
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular MedicineUniversity of Oxford Headley WayOxfordOX3 9DSUK
- Wolfson Imaging Centre MRC Weatherall Institute of Molecular MedicineUniversity of Oxford Headley WayOxfordOX3 9DSUK
| | - Silvia Galiani
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular MedicineUniversity of Oxford Headley WayOxfordOX3 9DSUK
- Wolfson Imaging Centre MRC Weatherall Institute of Molecular MedicineUniversity of Oxford Headley WayOxfordOX3 9DSUK
| | - Wolfgang Schliebs
- Institute of Biochemistry and Pathobiochemistry Systemic BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry Systemic BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Christian Eggeling
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular MedicineUniversity of Oxford Headley WayOxfordOX3 9DSUK
- Leibniz-Institute of Photonic Technologies & Institute of Applied Optic and BiophysicsFriedrich-Schiller University JenaMax-Wien-Platz 107743JenaGermany
| | - Katharina Reglinski
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular MedicineUniversity of Oxford Headley WayOxfordOX3 9DSUK
- Leibniz-Institute of Photonic Technologies & Institute of Applied Optic and BiophysicsFriedrich-Schiller University JenaMax-Wien-Platz 107743JenaGermany
- University Hospital JenaBachstraße 1807743JenaGermany
| |
Collapse
|
3
|
Galiani S, Waithe D, Reglinski K, Cruz-Zaragoza LD, Garcia E, Clausen MP, Schliebs W, Erdmann R, Eggeling C. Super-resolution Microscopy Reveals Compartmentalization of Peroxisomal Membrane Proteins. J Biol Chem 2016; 291:16948-62. [PMID: 27311714 PMCID: PMC5016101 DOI: 10.1074/jbc.m116.734038] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 11/25/2022] Open
Abstract
Membrane-associated events during peroxisomal protein import processes play an essential role in peroxisome functionality. Many details of these processes are not known due to missing spatial resolution of technologies capable of investigating peroxisomes directly in the cell. Here, we present the use of super-resolution optical stimulated emission depletion microscopy to investigate with sub-60-nm resolution the heterogeneous spatial organization of the peroxisomal proteins PEX5, PEX14, and PEX11 around actively importing peroxisomes, showing distinct differences between these peroxins. Moreover, imported protein sterol carrier protein 2 (SCP2) occupies only a subregion of larger peroxisomes, highlighting the heterogeneous distribution of proteins even within the peroxisome. Finally, our data reveal subpopulations of peroxisomes showing only weak colocalization between PEX14 and PEX5 or PEX11 but at the same time a clear compartmentalized organization. This compartmentalization, which was less evident in cases of strong colocalization, indicates dynamic protein reorganization linked to changes occurring in the peroxisomes. Through the use of multicolor stimulated emission depletion microscopy, we have been able to characterize peroxisomes and their constituents to a yet unseen level of detail while maintaining a highly statistical approach, paving the way for equally complex biological studies in the future.
Collapse
Affiliation(s)
- Silvia Galiani
- From the Medical Research Council Human Immunology Unit and
| | - Dominic Waithe
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | | | - Luis Daniel Cruz-Zaragoza
- Institute of Physiological Chemistry, Systemic Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany, and
| | - Esther Garcia
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Mathias P Clausen
- From the Medical Research Council Human Immunology Unit and MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Wolfgang Schliebs
- Institute of Physiological Chemistry, Systemic Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany, and
| | - Ralf Erdmann
- Institute of Physiological Chemistry, Systemic Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany, and
| | - Christian Eggeling
- From the Medical Research Council Human Immunology Unit and Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom,
| |
Collapse
|