1
|
Vamsi Krishna K, Bharathi N, George Shiju S, Alagesan Paari K, Malaviya A. An updated review on advancement in fermentative production strategies for biobutanol using Clostridium spp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47988-48019. [PMID: 35562606 DOI: 10.1007/s11356-022-20637-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
A significant concern of our fuel-dependent era is the unceasing exhaustion of petroleum fuel supplies. In parallel to this, environmental issues such as the greenhouse effect, change in global climate, and increasing global temperature must be addressed on a priority basis. Biobutanol, which has fuel characteristics comparable to gasoline, has attracted global attention as a viable green fuel alternative among the many biofuel alternatives. Renewable biomass could be used for the sustainable production of biobutanol by the acetone-butanol-ethanol (ABE) pathway. Non-extinguishable resources, such as algal and lignocellulosic biomass, and starch are some of the most commonly used feedstock for fermentative production of biobutanol, and each has its particular set of advantages. Clostridium, a gram-positive endospore-forming bacterium that can produce a range of compounds, along with n-butanol is traditionally known for its biobutanol production capabilities. Clostridium fermentation produces biobased n-butanol through ABE fermentation. However, low butanol titer, a lack of suitable feedstock, and product inhibition are the primary difficulties in biobutanol synthesis. Critical issues that are essential for sustainable production of biobutanol include (i) developing high butanol titer producing strains utilizing genetic and metabolic engineering approaches, (ii) renewable biomass that could be used for biobutanol production at a larger scale, and (iii) addressing the limits of traditional batch fermentation by integrated bioprocessing technologies with effective product recovery procedures that have increased the efficiency of biobutanol synthesis. Our paper reviews the current progress in all three aspects of butanol production and presents recent data on current practices in fermentative biobutanol production technology.
Collapse
Affiliation(s)
- Kondapalli Vamsi Krishna
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India
| | - Natarajan Bharathi
- Department of Life Sciences, CHRIST (Deemed to Be University), Bengaluru, India
| | - Shon George Shiju
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India
| | | | - Alok Malaviya
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India.
- Department of Life Sciences, CHRIST (Deemed to Be University), Bengaluru, India.
| |
Collapse
|
2
|
Wang Z, Xue T, Hu D, Ma Y. A Novel Butanol Tolerance-Promoting Function of the Transcription Factor Rob in Escherichia coli. Front Bioeng Biotechnol 2020; 8:524198. [PMID: 33072717 PMCID: PMC7537768 DOI: 10.3389/fbioe.2020.524198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Producing high concentrations of biobutanol is challenging, primarily because of the toxicity of butanol toward cells. In our previous study, several butanol tolerance-promoting genes were identified from butanol-tolerant Escherichia coli mutants and inactivation of the transcriptional regulator factor Rob was shown to improve butanol tolerance. Here, the butanol tolerance characteristics and mechanism regulated by inactivated Rob are investigated. Comparative transcriptome analysis of strain DTrob, with a truncated rob in the genome, and the control BW25113 revealed 285 differentially expressed genes (DEGs) to be associated with butanol tolerance and categorized as having transport, localization, and oxidoreductase activities. Expression of 25 DEGs representing different functional categories was analyzed by quantitative reverse transcription PCR (qRT-PCR) to assess the reliability of the RNA-Seq data, and 92% of the genes showed the same expression trend. Based on functional complementation experiments of key DEGs, deletions of glgS and yibT increased the butanol tolerance of E. coli, whereas overexpression of fadB resulted in increased cell density and a slight increase in butanol tolerance. A metabolic network analysis of these DEGs revealed that six genes (fadA, fadB, fadD, fadL, poxB, and acs) associated with acetyl-CoA production were significantly upregulated in DTrob, suggesting that Rob inactivation might enhance butanol tolerance by increasing acetyl-CoA. Interestingly, DTrob produced more acetate in response to butanol stress than the wild-type strain, resulting in the upregulation expression of some genes involved in acetate metabolism. Altogether, the results of this study reveal the mechanism underlying increased butanol tolerance in E. coli regulated by Rob inactivation.
Collapse
Affiliation(s)
- Zhiquan Wang
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China.,Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Tingli Xue
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China.,Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Dongsheng Hu
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China.,Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yuanyuan Ma
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Centre of Chemical Science and Engineering, and Key Laboratory for Green Chemical Technology, Tianjin University, Tianjin, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Frontier Technology Institute, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Kushwaha D, Srivastava N, Mishra I, Upadhyay SN, Mishra PK. Recent trends in biobutanol production. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0041] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Finite availability of conventional fossil carbonaceous fuels coupled with increasing pollution due to their overexploitation has necessitated the quest for renewable fuels. Consequently, biomass-derived fuels are gaining importance due to their economic viability and environment-friendly nature. Among various liquid biofuels, biobutanol is being considered as a suitable and sustainable alternative to gasoline. This paper reviews the present state of the preprocessing of the feedstock, biobutanol production through fermentation and separation processes. Low butanol yield and its toxicity are the major bottlenecks. The use of metabolic engineering and integrated fermentation and product recovery techniques has the potential to overcome these challenges. The application of different nanocatalysts to overcome the existing challenges in the biobutanol field is gaining much interest. For the sustainable production of biobutanol, algae, a third-generation feedstock has also been evaluated.
Collapse
Affiliation(s)
- Deepika Kushwaha
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Ishita Mishra
- Green Brick Eco Solutions, Okha Industrial Area , New Delhi 110020 , India
| | - Siddh Nath Upadhyay
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| |
Collapse
|
4
|
Shin JH, Park SH, Oh YH, Choi JW, Lee MH, Cho JS, Jeong KJ, Joo JC, Yu J, Park SJ, Lee SY. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid. Microb Cell Fact 2016; 15:174. [PMID: 27717386 PMCID: PMC5054628 DOI: 10.1186/s12934-016-0566-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/22/2016] [Indexed: 01/30/2023] Open
Abstract
Background 5-Aminovaleric acid (5AVA) is an important five-carbon platform chemical that can be used for the synthesis of polymers and other chemicals of industrial interest. Enzymatic conversion of l-lysine to 5AVA has been achieved by employing lysine 2-monooxygenase encoded by the davB gene and 5-aminovaleramidase encoded by the davA gene. Additionally, a recombinant Escherichia coli strain expressing the davB and davA genes has been developed for bioconversion of l-lysine to 5AVA. To use glucose and xylose derived from lignocellulosic biomass as substrates, rather than l-lysine as a substrate, we previously examined direct fermentative production of 5AVA from glucose by metabolically engineered E. coli strains. However, the yield and productivity of 5AVA achieved by recombinant E. coli strains remain very low. Thus, Corynebacterium glutamicum, a highly efficient l-lysine producing microorganism, should be useful in the development of direct fermentative production of 5AVA using l-lysine as a precursor for 5AVA. Here, we report the development of metabolically engineered C. glutamicum strains for enhanced fermentative production of 5AVA from glucose. Results Various expression vectors containing different promoters and origins of replication were examined for optimal expression of Pseudomonas putida davB and davA genes encoding lysine 2-monooxygenase and delta-aminovaleramidase, respectively. Among them, expression of the C. glutamicum codon-optimized davA gene fused with His6-Tag at its N-Terminal and the davB gene as an operon under a strong synthetic H36 promoter (plasmid p36davAB3) in C. glutamicum enabled the most efficient production of 5AVA. Flask culture and fed-batch culture of this strain produced 6.9 and 19.7 g/L (together with 11.9 g/L glutaric acid as major byproduct) of 5AVA, respectively. Homology modeling suggested that endogenous gamma-aminobutyrate aminotransferase encoded by the gabT gene might be responsible for the conversion of 5AVA to glutaric acid in recombinant C. glutamicum. Fed-batch culture of a C. glutamicum gabT mutant-harboring p36davAB3 produced 33.1 g/L 5AVA with much reduced (2.0 g/L) production of glutaric acid. Conclusions Corynebacterium glutamicum was successfully engineered to produce 5AVA from glucose by optimizing the expression of two key enzymes, lysine 2-monooxygenase and delta-aminovaleramidase. In addition, production of glutaric acid, a major byproduct, was significantly reduced by employing C. glutamicum gabT mutant as a host strain. The metabolically engineered C. glutamicum strains developed in this study should be useful for enhanced fermentative production of the novel C5 platform chemical 5AVA from renewable resources. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0566-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jae Ho Shin
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Metabolic Engineering National Research Laboratory and BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seok Hyun Park
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Metabolic Engineering National Research Laboratory and BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young Hoon Oh
- Division of Convergence Chemistry, Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology, P.O. Box 107, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34602, Republic of Korea
| | - Jae Woong Choi
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Moon Hee Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Metabolic Engineering National Research Laboratory and BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae Sung Cho
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Metabolic Engineering National Research Laboratory and BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jeong Chan Joo
- Division of Convergence Chemistry, Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology, P.O. Box 107, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34602, Republic of Korea
| | - James Yu
- Metabolic Engineering National Research Laboratory and BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Si Jae Park
- Department of Environmental Engineering and Energy, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggido, 17058, Republic of Korea.
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Metabolic Engineering National Research Laboratory and BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Bioinformatics Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
6
|
Liao C, Seo SO, Lu T. System-level modeling of acetone-butanol-ethanol fermentation. FEMS Microbiol Lett 2016; 363:fnw074. [PMID: 27020410 DOI: 10.1093/femsle/fnw074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2016] [Indexed: 11/12/2022] Open
Abstract
Acetone-butanol-ethanol (ABE) fermentation is a metabolic process of clostridia that produces bio-based solvents including butanol. It is enabled by an underlying metabolic reaction network and modulated by cellular gene regulation and environmental cues. Mathematical modeling has served as a valuable strategy to facilitate the understanding, characterization and optimization of this process. In this review, we highlight recent advances in system-level, quantitative modeling of ABE fermentation. We begin with an overview of integrative processes underlying the fermentation. Next we survey modeling efforts including early simple models, models with a systematic metabolic description, and those incorporating metabolism through simple gene regulation. Particular focus is given to a recent system-level model that integrates the metabolic reactions, gene regulation and environmental cues. We conclude by discussing the remaining challenges and future directions towards predictive understanding of ABE fermentation.
Collapse
Affiliation(s)
- Chen Liao
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Seung-Oh Seo
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|