1
|
Wee WB, Leung K, Coates AL. Modeling breath-enhanced jet nebulizers to estimate pulmonary drug deposition. J Aerosol Med Pulm Drug Deliv 2013; 26:387-96. [PMID: 23509934 DOI: 10.1089/jamp.2012.0984] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Predictable delivery of aerosol medication for a given patient and drug-device combination is crucial, both for therapeutic effect and to avoid toxicity. The gold standard for measuring pulmonary drug deposition (PDD) is gamma scintigraphy. However, these techniques expose patients to radiation, are complicated, and are relevant for only one patient and drug-device combination, making them less available. Alternatively, in vitro experiments have been used as a surrogate to estimate in vivo performance, but this is time-consuming and has few "in vitro to in vivo" correlations for therapeutics delivered by inhalation. An alternative method for determining inhaled mass and PDD is proposed by deriving and validating a mathematical model, for the individual breathing patterns of normal subjects and drug-device operating parameters. This model was evaluated for patients with cystic fibrosis (CF). METHODS This study is comprised of three stages: mathematical model derivation, in vitro testing, and in vivo validation. The model was derived from an idealized patient's respiration cycle and the steady-state operating characteristics of a drug-device combination. The model was tested under in vitro dynamic conditions that varied tidal volume, inspiration-to-expiration time, and breaths per minute. This approach was then extended to incorporate additional physiological parameters (dead space, aerodynamic particle size distribution) and validated against in vivo nuclear medicine data in predicting PDD in both normal subjects and those with CF. RESULTS The model shows strong agreement with in vitro testing. In vivo testing with normal subjects yielded good agreement, but less agreement for patients with chronic obstructive lung disease and bronchiectasis from CF. CONCLUSIONS The mathematical model was successful in accommodating a wide range of breathing patterns and drug-device combinations. Furthermore, the model has demonstrated its effectiveness in predicting the amount of aerosol delivered to "normal" subjects. However, challenges remain in predicting deposition in obstructive lung disease.
Collapse
Affiliation(s)
- Wallace B Wee
- 1 Division of Undergraduate Medicine, University of Toronto , Toronto, Ontario, Canada
| | | | | |
Collapse
|
2
|
Coates AL, Green M, Leung K, Chan J, Ribeiro N, Ratjen F, Charron M. A comparison of amount and speed of deposition between the PARI LC STAR® jet nebulizer and an investigational eFlow® nebulizer. J Aerosol Med Pulm Drug Deliv 2011; 24:157-63. [PMID: 21361784 DOI: 10.1089/jamp.2010.0861] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The potency and physical properties of many of the drugs used in the treatment of cystic fibrosis necessitates the use of nebulization, a relatively time-consuming pulmonary delivery method. Newer, faster, and more efficient delivery systems are being proposed. The purposes of this study was to compare the length of time it took to deliver the equivalent of normal saline nebulized for 10 min in a PARI LC STAR(®) nebulizer to that of an investigational PARI eFlow(®). METHODS Six normal adults inhaled a 4-mL (36-mg) charge volume of saline from the LC STAR(®) or a 2.5-mL (22.5-mg) charge volume from the investigational eFlow(®). The saline was mixed with (99m)Tc-DTPA to allow two-dimensional imaging. The inhalation was preceded by a xenon equilibration scan to allow more accurate separation of deposition into central and peripheral lung regions. RESULTS The investigational eFlow(®) delivered 8.6 ± 1.0 mg, approximately 90% of the lung dose compared to the LC STAR(®), 9.6 ± 1.0 mg, but did in less than half the time (p < 0.02 for both). There were no differences in central versus peripheral distribution for either device. CONCLUSIONS In conclusion the investigational eFlow(®) was both faster and more efficient than the LC STAR(®).
Collapse
Affiliation(s)
- Allan L Coates
- Division of Nuclear Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Canada.
| | | | | | | | | | | | | |
Collapse
|
3
|
Newman SP, Pitcairn GR. In Vitro/In Vivo Correlations for Respiratory Drug Delivery. ACTA ACUST UNITED AC 2008. [DOI: 10.1081/crp-54959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Coates AL, Green M, Leung K, Chan J, Ribeiro N, Louca E, Ratjen F, Charron M, Tservistas M, Keller M. Rapid pulmonary delivery of inhaled tobramycin for Pseudomonas infection in cystic fibrosis: a pilot project. Pediatr Pulmonol 2008; 43:753-9. [PMID: 18613006 DOI: 10.1002/ppul.20850] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Patients with cystic fibrosis spend as much 30 min a day inhaling tobramycin. Could a new rapid system deposit the equivalent amount of tobramycin faster? METHODS Six healthy adult males inhaled 5 ml (300 mg) of tobramycin from a breath enhanced nebulizer and either 125 mg (n = 3) or 150 mg (n = 3) from a vibrating membrane system with a large or small aerosol mixing chamber respectively. A radiolabel was added to the solution and shown to "track" with the tobramycin. Imaging was done with a dual headed gamma camera. Because the radiolabel will be cleared by mucociliary action during administration, algorithms were developed to allow the comparison of a slower system to a faster one. RESULTS Both formulations were well tolerated. The lung deposition was 16.6 +/- 3.2% (mean +/- SD) of the charge dose delivered in 10.9 +/- 1.0 min for the breath enhanced nebulizer versus 32.0 +/- 5.1% delivered in 2.5 +/- 0.4 min from the vibrating membrane system. The absolute pulmonary delivery of tobramycin was 49.9 +/- 9.6 versus 43.9 +/- 4.8 mg for the two systems respectively, differences that were statistically significant (pair t-test) but unlikely to be clinically significant. There was a similar deposition of tobramycin for the 125 and 150 mg dose. CONCLUSIONS It is possible to deliver an equivalent amount of tobramycin in a shorter period of time with the new vibrating membrane system and a more concentrated formulation. These data will allow the design of a comparison in patients with CF.
Collapse
Affiliation(s)
- Allan L Coates
- Division of Nuclear Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Alothman GA, Ho B, Alsaadi MM, Ho SL, O'Drowsky L, Louca E, Coates AL. Bronchial constriction and inhaled colistin in cystic fibrosis. Chest 2005; 127:522-9. [PMID: 15705991 DOI: 10.1378/chest.127.2.522] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVE Inhaled colistin is used for the treatment of Pseudomonas aeruginosa infection in cystic fibrosis (CF) patients despite reports of chest tightness and bronchospasm. The main objective of the study was to assess whether bronchospasm occurred in pediatric CF patients with or without clinical evidence of airway hyperreactivity. DESIGN AND METHODS A prospective placebo-controlled clinical trial with crossover design was devised using challenge tests with 75 mg colistin in 4 mL saline solution and a placebo solution of the same osmolarity using a breath-enhanced nebulizer for administration. Subjects were recruited as follows: high risk (HR) for bronchospasm due to a personal history of recurrent wheezing, a family history of asthma and/or atopy, or bronchial lability, as demonstrated in pulmonary function tests; or low risk (LR) without these characteristics. RESULTS The mean FEV(1) (expressed as the mean [+/- SD] fall from baseline) of the HR group (n = 12) fell 12 +/- 9% after placebo was administered, and fell 17 +/- 10% after colistin was administered. For the LR group (n = 8), the mean FEV(1) fell 9 +/- 4% following placebo administration and 13 +/- 8% following colistin administration. There was a greater number of subjects in the HR group compared to the LR group, which had a mean fall in FEV(1) of >/= 15% (p < 0.01) after inhaling colistin. The differences between placebo and colistin therapy in the LR group were not significant. CONCLUSION The results demonstrated that colistin can cause bronchospasm, particularly in those patients with coexisting CF and asthma.
Collapse
Affiliation(s)
- Ghassan A Alothman
- Division of Respiratory Medicine, Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
6
|
Leung K, Louca E, Coates AL. Comparison of Breath-Enhanced to Breath-Actuated Nebulizers for Rate, Consistency, and Efficiency. Chest 2004; 126:1619-27. [PMID: 15539736 DOI: 10.1378/chest.126.5.1619] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVES To evaluate differences between three new-generation nebulizers-Pari LC Star (Pari Respiratory Equipment; Mississauga, ON, Canada), AeroEclipse (Trudell Medical International, London, ON, Canada), and Halolite (Medic-Aid Limited, West Sussex, UK)-in terms of rate and amount of expected deposition as well as the consistency of the doses delivered. METHODS The in vitro performance characteristics were determined and then coupled to the respiratory pattern of seven patients with cystic fibrosis (age range, 4 to 18 years) in order to calculate expected deposition. The Pari LC Star and AeroEclipse were characterized while being driven by the Pari ProNeb Ultra compressor (Pari Respiratory Equipment) for home use, and by a 50-psi medical air hospital source. The Halolite has its own self-contained compressor. Algorithms for the rate of output for the inspiratory flow were developed for each device. Patient flow patterns were divided into 5-ms epochs, and the expected deposition for each epoch was calculated from the algorithms. Summed over a breath, this allowed the calculation of the estimated deposition for each patient's particular pattern of breathing. RESULTS The rate of deposition was highest for the Pari LC Star and lowest for the Halolite. Rate of deposition was independent of respiratory pattern for the Pari LC Star and AeroEclipse, but proportional to respiratory rate for the Halolite. The differences between the Pari LC Star and AeroEclipse were less when driven by the 50-psi source. The AeroEclipse had the least amount of drug wastage. As designed, the Halolite delivered a predetermined amount of drug very accurately, whereas expected deposition when run to dryness of the other two devices had significant variations. CONCLUSIONS To minimize treatment time, the Pari LC Star would be best. To minimize drug wastage, the AeroEclipse would be best. To accurately deliver a specific drug dose, the Halolite would be best.
Collapse
Affiliation(s)
- Kitty Leung
- Division of Respiratory Medicine, The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada
| | | | | |
Collapse
|
7
|
Alothman GA, Alsaadi MM, Ho BL, Ho SL, Dupuis A, Corey M, Coates AL. Evaluation of bronchial constriction in children with cystic fibrosis after inhaling two different preparations of tobramycin. Chest 2002; 122:930-4. [PMID: 12226034 DOI: 10.1378/chest.122.3.930] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVES This randomized, double-blind, cross-over study evaluated the risk of bronchoconstriction with two preparations of inhaled tobramycin in children with cystic fibrosis (CF) infected with Pseudomonas aeruginosa with and without airway hyperreactivity. DESIGN Of 19 children with CF (age range, 7 to 16 years) with mild-to-moderate pulmonary disease, 10 children were at high risk (HR) for bronchospasm (family history of asthma and previous response to bronchodilators) and 9 children were at low risk (LR) for bronchospasm (no family history of asthma or previous response to bronchodilators). Two solutions of tobramycin were administered: (1) 80 mg in a 2-mL vial diluted with 2 mL of saline solution containing the preservatives phenol and bisulfites (IV preparation); and (2) 300 mg in a preservative-free preparation in a 5-mL solution. Following a bronchodilator-free period of 12 h, the patients inhaled either one or the other preparation in random order on two different occasions, 2 weeks apart. RESULTS Prechallenge and postchallenge results for the LR group showed a percentage of fall in FEV(1) (DeltaFEV(1)) of 12 +/- 9% (mean +/- SD) for the IV preparation, compared to 4 +/- 5% for the preservative-free preparation (p = 0.046). An DeltaFEV(1) of > 10% was seen in six of nine patients for the IV preparation and in one of nine patients for preservative-free preparation. For the HR group, the DeltaFEV(1) was 17 +/- 13% for the IV-preparation group, compared to 16 +/- 12% for the preservative-free group (p = 0.4). In this group, equal numbers of patients (8 of 10 patients) had an DeltaFEV(1) > 10% after inhaling each preparation. The largest DeltaFEV(1) was 44% (HR group with the preservative-free preparation that forced the early termination of inhalation). CONCLUSIONS Both preparations caused significant bronchoconstriction in the HR group, and the preservative-containing IV preparation caused more bronchospasm in LR group than the preservative-free solution. Heightened airway reactivity in children with CF places them at risk of bronchospasm from inhalation therapy.
Collapse
Affiliation(s)
- Ghassan A Alothman
- Division of Respiratory Medicine, Hospital for Sick Children, University of Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Ho SL, Kwong WT, O'Drowsky L, Coates AL. Evaluation of four breath-enhanced nebulizers for home use. JOURNAL OF AEROSOL MEDICINE : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR AEROSOLS IN MEDICINE 2002; 14:467-75. [PMID: 11791687 DOI: 10.1089/08942680152744677] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The objective of this study was to evaluate relative efficiency in vitro of four reusable breath-enhanced nebulizers (Pari LC Star, Medic-Aid Ventstream, Devilbiss PermaNeb, Salter Ultramist), and to integrate the in vitro performance data of the nebulizers with the respiratory patterns of four cystic fibrosis (CF) patients to compare efficiency in vivo of each device for each individual patient. Six nebulizers of each type were used to nebulize a solution of 2.5 mg (0.5 mL) albuterol with 3.5 mL of 0.9% saline. Total albuterol output and the rate of albuterol output of each device were measured until end-nebulization and for 4 min, respectively, using entrained flows from 0 to 20 L/min through the inspiratory valve of the device. Particle size distributions and the respirable fraction (RF) were evaluated by laser diffraction technique. Regression analysis of the change in rate of output and change in RF values with inspiratory flows was done to characterize each nebulizer's performance over the complete range of interest. Actual breath tracings of four CF patients were integrated with the equations specific to the in vitro performance of each nebulizer and in vivo nebulizer efficiency was calculated. The change in efficiency in vitro from 0 to 20 L/min flow, respectively, was highest for the Star (44-57%) and lowest for the Ultramist (13-15%). The mean predicted efficiency in vivo for the Star was threefold that of the Ultramist. Although all four nebulizers are breath-enhanced in design, clearly there are measurable differences in the performance and efficiency of each type. The Pari LC Star nebulizer has proven to be the nebulizer of choice among the devices tested.
Collapse
Affiliation(s)
- S L Ho
- Research Institute, Hospital for Sick Children and the University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
9
|
Coates AL, Dinh L, MacNeish CF, Rollin T, Gagnon S, Ho SL, Lands LC. Accounting for radioactivity before and after nebulization of tobramycin to insure accuracy of quantification of lung deposition. JOURNAL OF AEROSOL MEDICINE : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR AEROSOLS IN MEDICINE 2001; 13:169-78. [PMID: 11066020 DOI: 10.1089/jam.2000.13.169] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The ability to predict drug deposition of inhaled drugs used in cystic fibrosis (CF) is important if there is a need to target specific doses of drug to the lungs of individual patients. The gold standard of measuring pulmonary deposition is the quantification of an aerosolized radiolabel either mixed with the drug solution or tagged directly to the compound of interest. Accuracy of the quantification could be assured if there is agreement between the amount of radioactivity before and after administration. Before administration, the radiolabel is concentrated in the well of the nebulizer, whereas after administration, it is distributed throughout the nebulizer, the expiratory filter and connectors, and the upper airway, stomach, trachea, and lung. Not only is the geometry of the distribution that is presented to the gamma camera different, but there are different attenuation factors for the various body tissues. The primary aim of this study was to evaluate the accuracy of the quantification of deposition. Secondary goals were to compare in vitro nebulizer performance with that measured in vivo during the deposition study. Eighty milligrams of tobramycin and technetium bound to human serum albumin was administered to 10 normal adults using a Pari LC Jet Plus (Pari Respiratory Equipment, Inc., Richmond, VA) breath-enhanced nebulizer. Techniques were developed that allowed for the accounting of 99 +/- 2% of the initial radioactivity. The fraction of the rate of lung deposition to total body deposition was the in vivo respirable fraction (0.62 +/- 0.07), which closely agreed with in vitro measurements of respirable fraction (0.62 +/- 0.04). Drug output measured from the change in weight and concentration in the nebulizer systematically overestimated drug output measured by the deposition study. The results indicate that 11.8 of the initial 80 mg would be deposited in the lungs. This technique could be adapted to accurately quantify the amount of deposition on any inhaled therapeutic agent, but caution must be used when extrapolating performance of a nebulizer on the bench to expected deposition in patients.
Collapse
Affiliation(s)
- A L Coates
- Division of Respiratory Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
10
|
Coates AL, Allen PD, MacNeish CF, Ho SL, Lands LC. Effect of size and disease on estimated deposition of drugs administered using jet nebulization in children with cystic fibrosis. Chest 2001; 119:1123-30. [PMID: 11296179 DOI: 10.1378/chest.119.4.1123] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVES To develop a model that quantified the nebulizer output that was inhaled by subjects with cystic fibrosis (CF) in order to predict the amount of drug likely to enter the upper airway contained in particles small enough to be deposited in the lower respiratory tract of individual patients. DESIGN Forty-three patients (age, 6 to 18 years) with CF, with FEV(1) of 26 to 124% of predicted, breathed through a nebulizer circuit with a pneumotachograph in place at the distal end. Algorithms were developed from the measured flows through the pneumotachograph, allowing partitioning of inspiration into undiluted aerosol and fresh gas. In order to validate the algorithms, argon was added to the nebulizing gas flow and then its concentration was analyzed at the mouth by mass spectrometry. RESULTS Predictions of the concentration of argon at the mouth were concordant with that measured by mass spectrometry, thus validating the model. Combining data from the model with in vitro nebulizer performance data, predictions for estimates for lung deposition for individuals were possible. Total estimate was independent of patient size or FEV(1). The respiratory duty cycle was 0.44 +/- 0.05 (mean +/- SD) and correlated (r = 0.91, p < 0.001) with estimated deposition and minute ventilation (r = 0.60, p < 0.01). However, when expressed in milligrams per kilogram of body weight, the estimated deposition in smaller children was fourfold higher than in larger children. CONCLUSIONS If the effect of patient size and pattern of breathing on estimated drug deposition are not considered when prescribing drugs given by nebulization, the result may be overdosing younger children, underdosing older children, or both.
Collapse
Affiliation(s)
- A L Coates
- Division of Respiratory Medicine, Hospital for Sick Children, University of Toronto, Toronto, Canada.
| | | | | | | | | |
Collapse
|
11
|
Abstract
STUDY OBJECTIVES To develop practical ways of nebulizing colistin by determining the rate of drug output, total drug output, and particle-size distribution of two commercially available jet nebulizers, the disposable Hudson 1730 Updraft II (Hudson Respiratory Care; Temecula, CA) and the reusable Pari LC Star breath-enhanced nebulizer (Pari Respiratory Equipment; Midlothian, VA). METHODS The nebulizers contained colistin, 75 mg, in 4 mL of isotonic solution. Particle-size distribution was measured by helium-neon laser diffraction, allowing calculation of the respirable fraction (RF), the mass of aerosol comprised of droplets < 5 microm. RESULTS The mean (95% confidence interval [CI]) total rate of output of the Updraft II was 2.6 mg/min (2.0, 3.1; n = 4) with 1.3 mg/min (1.0, 1.5) mg/min within the RF. The rate of output of the LC Star increased in a quadratic relationship to the inspiratory flow, delivering 1.8 mg/min (0.7, 2.0; n = 4) with 1.4 mg/min (1.3, 1.6) within the RF, and 6.2 mg/min (5.6, 6.8) with 5.3 mg/min (4.8, 5.7) within the RF, at 0 L/min and 20 L/min inspiratory flows, respectively. Efficiency, as the rate of expected pulmonary deposition divided by rate of total output, was then calculated. The LC Star estimated 56% (51, 61) efficiency, with pulmonary delivery of 29% (26, 32) of the charge of the nebulizer, compared to the Updraft II at 22% (22, 23) efficiency and expected pulmonary deposition of 10% (10, 10) of the dose. CONCLUSIONS Colistin can be successfully nebulized with both nebulizers tested. This study provides an estimate of in vivo efficiency and expected pulmonary deposition that may be used in future trials.
Collapse
Affiliation(s)
- S L Katz
- Division of Respiratory Medicine, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
12
|
Affiliation(s)
- A L Coates
- Division of Respiratory Medicine, Hospital for Sick Children Research Institute, and University of Toronto, Canada, Ontario
| | | |
Collapse
|
13
|
COATES ALLANL, MACNEISH CLAIRF, LANDS LARRYC, SMOUNTAS ARGYRIOS, MEISNER DALE, KELEMEN SUSAN, VADAS ELIZABETHB. Factors Influencing the Rate of Drug Output During the Course of Wet Nebulization. ACTA ACUST UNITED AC 1998. [DOI: 10.1089/jam.1998.11.101] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|