1
|
Chang CY, Yang BH, Ke CC, Hsu JL, Jhou RH, Chang WY, Peng NJ, Liu RS. Performance and Feasibility of Therapeutic Vibrating Mesh Nebulizer for Ventilation Lung Scan. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Escobar YNH, Morrison CB, Chen Y, Hickman E, Love CA, Rebuli ME, Surratt JD, Ehre C, Jaspers I. Differential responses to e-cig generated aerosols from humectants and different forms of nicotine in epithelial cells from nonsmokers and smokers. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1064-L1073. [PMID: 33825493 DOI: 10.1152/ajplung.00525.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the United States, millions of adults use electronic cigarettes (e-cigs), and a majority of these users are former or current cigarette smokers. It is unclear, whether prior smoking status affects biological responses induced by e-cigs. In this study, differentiated human nasal epithelial cells (hNECs) from nonsmokers and smokers at air-liquid interface were acutely exposed to the e-cig generated aerosols of humectants, propylene glycol (PG), and glycerol (GLY). Mucin levels were examined in the apical washes, and cytokine levels were assessed in the basolateral supernatants 24 h postexposure. The aerosol from the GLY exposure increased mucin 5, subtype AC (MUC5AC) levels in the apical wash of hNECs from nonsmokers, but not smokers. However, the aerosol from GLY induced pro-inflammatory responses in hNECs from smokers. We also exposed hNECs from nonsmokers and smokers to e-cig generated aerosol from PG:GLY with freebase nicotine or nicotine salt. The PG:GLY with freebase nicotine exposure increased MUC5AC and mucin 5, subtype B (MUC5B) levels in hNECs from nonsmokers, but the nicotine salt exposure did not. The PG:GLY with nicotine salt exposure increased pro-inflammatory cytokines in hNECs from smokers, which was not seen with the freebase nicotine exposure. Taken together, these data indicate that the e-cig generated aerosols from the humectants, mostly GLY, and the type of nicotine used cause differential effects in airway epithelial cells from nonsmokers and smokers. As e-cig use is increasing, it is important to understand that the biological effects of e-cig use are likely dependent on prior cigarette smoke exposure.
Collapse
Affiliation(s)
- Yael-Natalie H Escobar
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, North Carolina
| | - Cameron B Morrison
- Marsico Lung Institute, University of North Carolina at Chapel Hill, North Carolina
| | - Yuzhi Chen
- Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, North Carolina
| | - Elise Hickman
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, North Carolina
| | - Charlotte A Love
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, North Carolina
| | - Meghan E Rebuli
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, North Carolina.,Department of Pediatrics, University of North Carolina at Chapel Hill, North Carolina
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, North Carolina.,Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, North Carolina.,Department of Pediatrics, University of North Carolina at Chapel Hill, North Carolina
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, North Carolina.,Department of Pediatrics, University of North Carolina at Chapel Hill, North Carolina
| |
Collapse
|
3
|
Gu W, Darquenne C. Heterogeneity in lobar and near-acini deposition of inhaled aerosol in the mouse lung. JOURNAL OF AEROSOL SCIENCE 2021; 151:105642. [PMID: 32921804 PMCID: PMC7480823 DOI: 10.1016/j.jaerosci.2020.105642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Laboratory animals are often used to derive health risk from environmental exposure or to assess the therapeutic effect of a drug delivered by inhaled therapy. Knowledge of the in-situ distribution of deposited particles on airway and alveolar surfaces is essential in any assessment of these effects. A unique database including both high-resolution lung anatomy and deposition data in four strains of laboratory mice have been recently made publicly available to the research community (https://doi.org/10.25820/9arg-9w56). Using these data, we investigated the effect of particle size on the distribution of deposited particles at the lobar and near-acini level. Analysis was performed on a total of 33 mice where 3, 16 and 14 animals were exposed to 0.5μm, 1μm and 2μm particles, respectively. Ratio of normalized deposition to normalized volume was calculated for each lobe (DV lobe ). At the near-acini level, the skew and standard deviation of the frequency distribution of particle deposition were calculated. Significant deviation above 1 was found for DV ratio in the cranial lobe (DV Cranial ). DV Middle , DV Caudal and DV Accessory were all significantly <1 and lower than DV left (p<0.01). At the near-acini level, skew and standard deviation were positively correlated with particle size and the presence of hot spots (high deposition) were mainly found in the apical region of the lung. These results highlight the uneven distribution of deposited particles in the mouse lung. Thus, depending on the lung sample location, individual analysis to determine overall deposition may either underestimate or overestimate total lung burden, at least for micron-sized particles.
Collapse
Affiliation(s)
- W. Gu
- Department of Medicine, University of California, San Diego, USA
| | - C. Darquenne
- Department of Medicine, University of California, San Diego, USA
| |
Collapse
|
4
|
Kaminsky DA, Daphtary N, Estepar RS, Ashikaga T, Mikulic L, Klein J, Kinsey CM. Ventilation Heterogeneity and Its Association with Nodule Formation Among Participants in the National Lung Screening Trial-A Preliminary Investigation. Acad Radiol 2020; 27:630-635. [PMID: 31471206 DOI: 10.1016/j.acra.2019.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/15/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
RATIONALE AND OBJECTIVES We have developed a technique to measure ventilation heterogeneity (VH) on low dose chest CT scan that we hypothesize may be associated with the development of lung nodules, and perhaps cancer. If true, such an analysis may improve screening by identifying regional areas of higher risk. MATERIALS AND METHODS Using the National Lung Screening Trial database, we identified a small subset of those participants who were labeled as having a positive screening test at 1 year (T1) but not at baseline (T0). We isolated the region in which the nodule would form on the T0 scan ("target region") and measured VH as the standard deviation of the linear dimension of a virtual cubic airspace based on measurement of lung attenuation within the region. RESULTS We analyzed 24 cases, 9 with lung cancer and 15 with a benign nodule. We found that the VH of the target region was nearly statistically greater than that of the corresponding contralateral control region (0.168 [0.110-0.226] vs. 0.112 [0.083-0.203], p = 0.051). The % emphysema within the target region was greater than that of the corresponding contralateral control region (1.339 [0.264-4.367] vs. 1.092 [0.375-4.748], p = 0.037). There was a significant correlation between the % emphysema and the VH of the target region (rho = +0.437, p = 0.026). CONCLUSION Our study provides the first data in support of increased local VH being associated with subsequent lung nodule formation. Further work is necessary to determine whether this technique can enhance screening for lung cancer by low dose chest CT scan.
Collapse
|
5
|
Verbanck S, Biddiscombe MF, Usmani OS. Inhaled aerosol dose distribution between proximal bronchi and lung periphery. Eur J Pharm Biopharm 2020; 152:18-22. [PMID: 32361031 DOI: 10.1016/j.ejpb.2020.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/11/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
Modern inhaled drug discovery programs assess dose delivery to proximal and distal airways using rudimentary imaging indices, where relative deposition is estimated by generically defined 'central' and 'peripheral' lung regions. Utilizing recent data linking the proximal airway topology to a characteristic pattern of aerosol lung deposition, we provide a direct measure of dose distribution between the proximal bronchi and the distal lung. We analyzed scintigraphic lung images of twelve asthma patients following inhalation of 1.5-, 3- and 6-µm monodisperse drug particles at breathing flows of 30- and 60-L/min. We explicitly used the central hot-spots associated with each patient's specific bronchial topology to obtain a direct measure of aerosol deposition in the proximal bronchi, rather than applying standard templates of lung boundaries. Maximum deposition in the central bronchi (as % of lung deposition) was 52 ± 10(SD)% (6 µm;60 L/min). Minimum central deposition was 17 ± 2(SD)% (1.5 µm;30 L/min) where the 83% aerosol 'escaping' deposition in the central bronchi reached 75 ± 17(SD)% of the lung area that could be reached by Krypton gas. For all particle sizes, hot-spots appeared in the same patient-specific central airway location, with greatest intensity at 60 L/min. For a range of respirable aerosol sizes and breathing flows, we have quantified deposited dose in the proximal bronchi and their distal lung reach, constituting a platform to support therapeutic inhaled aerosol drug development.
Collapse
Affiliation(s)
- Sylvia Verbanck
- Respiratory Division, University Hospital UZBrussel, Brussels, Belgium.
| | | | | |
Collapse
|
6
|
Ruzycki CA, Martin AR, Finlay WH. An Exploration of Factors Affecting In Vitro Deposition of Pharmaceutical Aerosols in the Alberta Idealized Throat. J Aerosol Med Pulm Drug Deliv 2019; 32:405-417. [DOI: 10.1089/jamp.2019.1531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Conor A. Ruzycki
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Andrew R. Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Warren H. Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
Advanced in vitro lung-on-chip platforms for inhalation assays: From prospect to pipeline. Eur J Pharm Biopharm 2019; 144:11-17. [PMID: 31499161 DOI: 10.1016/j.ejpb.2019.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 01/14/2023]
Abstract
With rapid advances in micro-fabrication processes and the availability of biologically-relevant lung cells, the development of lung-on-chip platforms is offering novel avenues for more realistic inhalation assays in pharmaceutical research, and thereby an opportunity to depart from traditional in vitro lung assays. As advanced models capturing the cellular pulmonary make-up at an air-liquid interface (ALI), lung-on-chips emulate both morphological features and biological functionality of the airway barrier with the ability to integrate respiratory breathing motions and ensuing tissue strains. Such in vitro systems allow importantly to mimic more realistic physiological respiratory flow conditions, with the opportunity to integrate physically-relevant transport determinants of aerosol inhalation therapy, i.e. recapitulating the pathway from airborne flight to deposition on the airway lumen. In this short opinion, we discuss such points and describe how these attributes are paving new avenues for exploring improved drug carrier designs (e.g. shape, size, etc.) and targeting strategies (e.g. conductive vs. respiratory regions) amongst other. We argue that while technical challenges still lie along the way in rendering in vitro lung-on-chip platforms more widespread across the general pharmaceutical research community, significant momentum is steadily underway in accelerating the prospect of establishing these as in vitro "gold standards".
Collapse
|
8
|
Fröhlich E. Biological Obstacles for Identifying In Vitro- In Vivo Correlations of Orally Inhaled Formulations. Pharmaceutics 2019; 11:E316. [PMID: 31284402 PMCID: PMC6680885 DOI: 10.3390/pharmaceutics11070316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/15/2019] [Accepted: 07/02/2019] [Indexed: 12/26/2022] Open
Abstract
Oral inhalation of drugs is the classic therapy of obstructive lung diseases. In contrast to the oral route, the link between in vitro and in vivo findings is less well defined and predictive models and parameters for in vitro-in vivo correlations are missing. Frequently used in vitro models and problems in obtaining in vivo values to establish such models and to identify the action of formulations in vivo are discussed. It may be concluded that major obstacles to link in vitro parameters on in vivo action include lack of treatment adherence and incorrect use of inhalers by patients, variation in inhaler performance, changes by humidity, uncertainties about lung deposition, and difficulties to measure drug levels in epithelial lining fluid and tissue. Physiologically more relevant in vitro models, improvement in inhaler performance, and better techniques for in vivo measurements may help to better understand importance and interactions between individual in vitro parameters in pulmonary delivery.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria.
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria.
| |
Collapse
|
9
|
Donaldson SH, Laube BL, Corcoran TE, Bhambhvani P, Zeman K, Ceppe A, Zeitlin PL, Mogayzel PJ, Boyle M, Locke LW, Myerburg MM, Pilewski JM, Flanagan B, Rowe SM, Bennett WD. Effect of ivacaftor on mucociliary clearance and clinical outcomes in cystic fibrosis patients with G551D-CFTR. JCI Insight 2018; 3:122695. [PMID: 30568035 DOI: 10.1172/jci.insight.122695] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The ability to restore cystic fibrosis transmembrane regulator (CFTR) function with effective small molecule modulators in patients with cystic fibrosis provides an opportunity to study relationships between CFTR ion channel function, organ level physiology, and clinical outcomes. METHODS We performed a multisite, prospective, observational study of ivacaftor, prescribed in patients with the G551D-CFTR mutation. Measurements of lung mucociliary clearance (MCC) were performed before and after treatment initiation (1 and 3 months), in parallel with clinical outcome measures. RESULTS Marked acceleration in whole lung, central lung, and peripheral lung MCC was observed 1 month after beginning ivacaftor and was sustained at 3 months. Improvements in MCC correlated with improvements in forced expiratory volume in the first second (FEV1) but not sweat chloride or symptom scores. CONCLUSIONS Restoration of CFTR activity with ivacaftor led to significant improvements in MCC. This physiologic assessment provides a means to characterize future CFTR modulator therapies and may help to predict improvements in lung function. TRIAL REGISTRATION ClinicialTrials.gov, NCT01521338. FUNDING CFF Therapeutics (GOAL11K1).
Collapse
Affiliation(s)
- Scott H Donaldson
- Department of Medicine, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Beth L Laube
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Timothy E Corcoran
- Department of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pradeep Bhambhvani
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kirby Zeman
- Department of Medicine, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Agathe Ceppe
- Department of Medicine, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Pamela L Zeitlin
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Peter J Mogayzel
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael Boyle
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Landon W Locke
- Department of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael M Myerburg
- Department of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph M Pilewski
- Department of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian Flanagan
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - William D Bennett
- Department of Medicine, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Alcoforado L, Dornelas de Andrade A, Herraiz JL, Brandão SCS, Barcelar JDM, Fink JB, Venegas JG. Anatomically Based Analysis of Radioaerosol Distribution in Pulmonary Scintigraphy: A Feasibility Study in Asthmatics. J Aerosol Med Pulm Drug Deliv 2018; 31:298-310. [PMID: 29672215 PMCID: PMC6161331 DOI: 10.1089/jamp.2017.1403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Manual analysis of two-dimensional (2D) scintigraphy to evaluate aerosol deposition is usually subjective and has reduced sensitivity to quantify regional differences between central and distal airways. AIMS (1) To present a method to analyze 2D scans based on three-dimensional (3D)-linked anatomically consistent regions of interest (ROIs); (2) to evaluate peripheral-to-central counts ratio (P/C2D) and penetration indices (PIs) for a set of 16 subjects with moderate-to-severe asthma; and (3) to compare the reproducibility of this method against one with manually traced ROIs. METHODS Two-dimensional scans were analyzed using custom software that scaled onto 2D-projections' 3D anatomical features, obtained from population-averaged computed tomography (CT) chest scans. ROIs for a rectangular box (bROI) and an anatomically shaped ROI (aROI) were defined by computer and by manually tracing the standard rectangular box (manual ROI [mROI]). These ROIs were defined five nonconsecutive times for each scan and average value and variability of the P/C2D were estimated. Based on CT estimates of lung and airways, volumes lying under the bROI and aROI, a 2D penetration index (PI2D) and a 3D penetration index (PI3D), were defined as volume-normalized ratios of aerosol deposition in central and peripheral ROIs and in central and distal airways, respectively. RESULTS P/C2D values and their variability, were influenced by the shape and method to define the ROIs: The P/C2D was systematically greater and more variable for mROI versus bROI (p < 0.005). The P/C2D for aROI was higher and its variability lower than those for the bROI (p < 0.001). The PI2D was in average the same for aROI and bROI, and is substantially (∼30 × ) greater than PI3D (p < 0.001). Both PI2D and PI3D, obtained with our analysis, compared well with literature values obtained with two scans (deposition and volume). CONCLUSION Our results demonstrate that 2D scintigraphy can be analyzed using anatomically based ROIs from 3D CT data, allowing objective and enhanced reproducibility values describing the distribution pattern of radioaerosol deposition in the tracheobronchial tree.
Collapse
Affiliation(s)
- Luciana Alcoforado
- Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Joaquin L. Herraiz
- Grupo de Fisica Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | - Jose G. Venegas
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Address correspondence to:Jose G. Venegas, PhDDepartment of AnesthesiaEdwards 410Massachusetts General Hospital55 Fruit St.Boston, MA 02114
| |
Collapse
|
11
|
Alcoforado L, Dornelas de Andrade A, Herraiz JL, Brandão SCS, Barcelar JDM, Fink JB, Venegas JG. Anatomically Based Analysis of Radioaerosol Distribution in Pulmonary Scintigraphy: A Feasibility Study in Asthmatics. J Aerosol Med Pulm Drug Deliv 2018. [DOI: https://doi.org/10.1089/jamp.2017.1403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Luciana Alcoforado
- Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Joaquin L. Herraiz
- Grupo de Fisica Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | - Jose G. Venegas
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Newby JM, Seim I, Lysy M, Ling Y, Huckaby J, Lai SK, Forest MG. Technological strategies to estimate and control diffusive passage times through the mucus barrier in mucosal drug delivery. Adv Drug Deliv Rev 2018; 124:64-81. [PMID: 29246855 PMCID: PMC5809312 DOI: 10.1016/j.addr.2017.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 01/05/2023]
Abstract
In mucosal drug delivery, two design goals are desirable: 1) insure drug passage through the mucosal barrier to the epithelium prior to drug removal from the respective organ via mucus clearance; and 2) design carrier particles to achieve a prescribed arrival time and drug uptake schedule at the epithelium. Both goals are achievable if one can control "one-sided" diffusive passage times of drug carrier particles: from deposition at the mucus interface, through the mucosal barrier, to the epithelium. The passage time distribution must be, with high confidence, shorter than the timescales of mucus clearance to maximize drug uptake. For 100nm and smaller drug-loaded nanoparticulates, as well as pure drug powders or drug solutions, diffusion is normal (i.e., Brownian) and rapid, easily passing through the mucosal barrier prior to clearance. Major challenges in quantitative control over mucosal drug delivery lie with larger drug-loaded nanoparticulates that are comparable to or larger than the pores within the mucus gel network, for which diffusion is not simple Brownian motion and typically much less rapid; in these scenarios, a timescale competition ensues between particle passage through the mucus barrier and mucus clearance from the organ. In the lung, as a primary example, coordinated cilia and air drag continuously transport mucus toward the trachea, where mucus and trapped cargo are swallowed into the digestive tract. Mucus clearance times in lung airways range from minutes to hours or significantly longer depending on deposition in the upper, middle, lower airways and on lung health, giving a wide time window for drug-loaded particle design to achieve controlled delivery to the epithelium. We review the physical and chemical factors (of both particles and mucus) that dictate particle diffusion in mucus, and the technological strategies (theoretical and experimental) required to achieve the design goals. First we describe an idealized scenario - a homogeneous viscous fluid of uniform depth with a particle undergoing passive normal diffusion - where the theory of Brownian motion affords the ability to rigorously specify particle size distributions to meet a prescribed, one-sided, diffusive passage time distribution. Furthermore, we describe how the theory of Brownian motion provides the scaling of one-sided diffusive passage times with respect to mucus viscosity and layer depth, and under reasonable caveats, one can also prescribe passage time scaling due to heterogeneity in viscosity and layer depth. Small-molecule drugs and muco-inert, drug-loaded carrier particles 100nm and smaller fall into this class of rigorously controllable passage times for drug delivery. Second we describe the prevalent scenarios in which drug-loaded carrier particles in mucus violate simple Brownian motion, instead exhibiting anomalous sub-diffusion, for which all theoretical control over diffusive passage times is lost, and experiments are prohibitive if not impossible to measure one-sided passage times. We then discuss strategies to overcome these roadblocks, requiring new particle-tracking experiments and emerging advances in theory and computation of anomalous, sub-diffusive processes that are necessary to predict and control one-sided particle passage times from deposition at the mucosal interface to epithelial uptake. We highlight progress to date, remaining hurdles, and prospects for achieving the two design goals for 200nm and larger, drug-loaded, non-dissolving, nanoparticulates.
Collapse
Affiliation(s)
- Jay M Newby
- Department of Mathematics and Applied Physical Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States
| | - Ian Seim
- Department of Mathematics and Applied Physical Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States
| | - Martin Lysy
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L 3G1, United States
| | - Yun Ling
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L 3G1, United States
| | - Justin Huckaby
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States; UNC-NCSU Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States
| | - M Gregory Forest
- Department of Mathematics and Applied Physical Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States; UNC-NCSU Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
13
|
Bennett WD, Zeman KL, Laube BL, Wu J, Sharpless G, Mogayzel PJ, Donaldson SH. Homogeneity of Aerosol Deposition and Mucociliary Clearance are Improved Following Ivacaftor Treatment in Cystic Fibrosis. J Aerosol Med Pulm Drug Deliv 2017; 31:204-211. [PMID: 29035122 DOI: 10.1089/jamp.2017.1388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Using planar gamma scintigraphy of inhaled radioaerosols, we have developed new analytical methods for assessing homogeneity of aerosol deposition and time-dependent particle clearance on a pixel-by-pixel basis, and applied them to a therapeutic cystic fibrosis (CF) study. METHODS At baseline and 1 month after beginning treatment with ivacaftor, a cystic fibrosis transmembrane regulator modulator for CF patients with at least one copy of the G551D mutation (n = 13), initial deposition and subsequent mucociliary clearance (MCC) of radiolabeled particles (99mTechnetium-sulfur colloid, 5 μm mass median aerodynamic diameter) inhaled under controlled breathing conditions were measured. RESULTS Improved homogeneity of deposition, that is, decreased areas of higher and lower particle deposition in the lungs, was observed following ivacaftor treatment. The mean number ratio (NR) of pixels with higher deposition, relative to lung size, decreased from 0.14 to 0.09 (p = 0.003) and mean NR of colder pixels decreased from 0.23 to 0.19 (p = 0.004). Particle clearance was also improved following treatment, with mean MCC through 60 minutes equal to 12% versus 24%, without and with treatment, respectively (p = 0.010). Pixel-level analysis of MCC showed that (1) the fraction of pixels clearing >30% at 60 minutes was increased from 0.13 to 0.32 (p = 0.007); and (2) the fraction of pixels clearing <5% at 60 minutes was decreased from 0.54 to 0.37 (p = 0.014), indicating an overall recruitment of more fast-clearing lung regions with ivacaftor treatment. CONCLUSION These detailed pixel analyses of deposition and clearance homogeneity may supplement traditional methods that use large regions of interest for assessing efficacy and mechanisms of therapeutic intervention in patients with airways disease.
Collapse
Affiliation(s)
- William D Bennett
- 1 Department of Medicine, University of North Carolina , Chapel Hill, North Carolina
| | - Kirby L Zeman
- 1 Department of Medicine, University of North Carolina , Chapel Hill, North Carolina
| | - Beth L Laube
- 2 Department of Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Jihong Wu
- 1 Department of Medicine, University of North Carolina , Chapel Hill, North Carolina
| | - Gail Sharpless
- 2 Department of Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Peter J Mogayzel
- 2 Department of Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Scott H Donaldson
- 1 Department of Medicine, University of North Carolina , Chapel Hill, North Carolina
| |
Collapse
|