1
|
Lee S, Kim H, Hong A, Song J, Lee S, Kim M, Hwang SY, Jeong D, Kim J, Son A, Lee YS, Kim VN, Kim JS, Chang H, Ahn K. Functional and molecular dissection of HCMV long non-coding RNAs. Sci Rep 2022; 12:19303. [PMID: 36369338 PMCID: PMC9652368 DOI: 10.1038/s41598-022-23317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022] Open
Abstract
Small, compact genomes confer a selective advantage to viruses, yet human cytomegalovirus (HCMV) expresses the long non-coding RNAs (lncRNAs); RNA1.2, RNA2.7, RNA4.9, and RNA5.0. Little is known about the function of these lncRNAs in the virus life cycle. Here, we dissected the functional and molecular landscape of HCMV lncRNAs. We found that HCMV lncRNAs occupy ~ 30% and 50-60% of total and poly(A)+viral transcriptome, respectively, throughout virus life cycle. RNA1.2, RNA2.7, and RNA4.9, the three abundantly expressed lncRNAs, appear to be essential in all infection states. Among these three lncRNAs, depletion of RNA2.7 and RNA4.9 results in the greatest defect in maintaining latent reservoir and promoting lytic replication, respectively. Moreover, we delineated the global post-transcriptional nature of HCMV lncRNAs by nanopore direct RNA sequencing and interactome analysis. We revealed that the lncRNAs are modified with N6-methyladenosine (m6A) and interact with m6A readers in all infection states. In-depth analysis demonstrated that m6A machineries stabilize HCMV lncRNAs, which could account for the overwhelming abundance of viral lncRNAs. Our study lays the groundwork for understanding the viral lncRNA-mediated regulation of host-virus interaction throughout the HCMV life cycle.
Collapse
Affiliation(s)
- Sungwon Lee
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Hyewon Kim
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Ari Hong
- grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jaewon Song
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Sungyul Lee
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Myeonghwan Kim
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Sung-yeon Hwang
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Dongjoon Jeong
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Jeesoo Kim
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Ahyeon Son
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Young-suk Lee
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - V. Narry Kim
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Jong-seo Kim
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| | - Hyeshik Chang
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826 Republic of Korea
| | - Kwangseog Ahn
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.410720.00000 0004 1784 4496Institute for Basic Science, Center for RNA Research, Seoul, 08826 Republic of Korea
| |
Collapse
|
2
|
Su H, Li Q, Li D, Li H, Feng Q, Cao X, Dong H. A versatile strategy to construct free-standing multi-furcated vessels and a complicated vascular network in heterogeneous porous scaffolds via combination of 3D printing and stimuli-responsive hydrogels. MATERIALS HORIZONS 2022; 9:2393-2407. [PMID: 35789239 DOI: 10.1039/d2mh00314g] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mimicking complex structures of natural blood vessels and constructing vascular networks in tissue engineering scaffolds are still challenging now. Herein we demonstrate a new and versatile strategy to fabricate free-standing multi-furcated vessels and complicated vascular networks in heterogeneous porous scaffolds by integrating stimuli-responsive hydrogels and 3D printing technology. Through the sol-gel transition of temperature-responsive gelatin and conversion between two physical crosslinking networks of pH-responsive chitosan (i.e., electrostatic network between protonated chitosan and sulfate ion, crystalline network of neutral chitosan), physiologically-stable gelatin/chitosan hydrogel tubes can be constructed. While stimuli-responsive hydrogels confer the formation mechanism of the hydrogel tube, 3D printing confers the feasibility to create a multi-furcated structure and interconnected network in various heterogeneous porous scaffolds. As a consequence, biomimetic multi-furcated vessels (MFVs) and heterogeneous porous scaffolds containing multi-furcated vessels (HPS-MFVs) can be constructed precisely. Our data further confirm that the artificial blood vessel (gelatin/chitosan hydrogel tube) shows good physiological stability, mechanical strength, semi-permeability, hemocompatibility, cytocompatibility and low in vivo inflammatory response. Co-culture of hepatocyte (L02 cells) and human umbilical vein endothelial cells (HUVECs) in HPS-MFVs indicates the successful construction of a liver model. We believe that our method offers a simple and easy-going way to achieve robust fabrication of free-standing multi-furcated blood vessels and prevascularization of porous scaffolds for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hongxian Su
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Dingguo Li
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Haofei Li
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Qi Feng
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xiaodong Cao
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Hua Dong
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
3
|
Babaie F, Omraninava M, Gorabi AM, Khosrojerdi A, Aslani S, Yazdchi A, Torkamandi S, Mikaeili H, Sathyapalan T, Sahebkar A. Etiopathogenesis of Psoriasis from Genetic Perspective: An updated Review. Curr Genomics 2022; 23:163-174. [PMID: 36777004 PMCID: PMC9878828 DOI: 10.2174/1389202923666220527111037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022] Open
Abstract
Psoriasis is an organ-specific autoimmune disease characterized by the aberrant proliferation and differentiation of keratinocytes, leading to skin lesions. Abnormal immune responses mediated by T cells and dendritic cells and increased production of inflammatory cytokines have been suggested as underlying mechanisms in the pathogenesis of psoriasis. Emerging evidence suggests that there is a heritable basis for psoriatic disorders. Moreover, numerous gene variations have been associated with the disease risk, particularly those in innate and adaptive immune responses and antigen presentation pathways. Herein, this article discusses the genetic implications of psoriatic diseases' etiopathogenesis to develop novel investigative and management options.
Collapse
Affiliation(s)
- Farhad Babaie
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran;,Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Melodi Omraninava
- Department of Infectious Diseases, Faculty of Medical Sciences, Sari Branch, Islamic Azad University, Sari, Iran
| | - Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khosrojerdi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arsalan Yazdchi
- Student Research Committee, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Torkamandi
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran;,Address correspondence to these authors at the Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran, P.O. Box: 91779-48564, Iran; E-mail: ; Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; E-mail: and Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; E-mail:
| | - Haleh Mikaeili
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran;,Address correspondence to these authors at the Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran, P.O. Box: 91779-48564, Iran; E-mail: ; Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; E-mail: and Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; E-mail:
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran;,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran;,Department of Biotechnology, School of Pharmacy, Mashhad University of Western Australia, Mashhad, Iran,Address correspondence to these authors at the Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran, P.O. Box: 91779-48564, Iran; E-mail: ; Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; E-mail: and Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; E-mail:
| |
Collapse
|
4
|
Zhang H, Che Y, Xuan B, Wu X, Li H. Serine hydroxymethyltransferase 2 (SHMT2) potentiates the aggressive process of oral squamous cell carcinoma by binding to interleukin enhancer-binding factor 2 (ILF2). Bioengineered 2022; 13:8785-8797. [PMID: 35333683 PMCID: PMC9161932 DOI: 10.1080/21655979.2022.2051886] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a frequent threatening head and neck malignancy. Serine hydroxymethyltransferase 2 (SHMT2) was identified to be upregulated in OSCC and its high expression was associated with poor patient prognosis. This paper set out to assess the influence of SHMT2 on OSCC progression and the potential mechanisms related to interleukin enhancer-binding factor 2 (ILF2). First of all, reverse transcription-quantitative PCR (RT-qPCR) and western blot examined the expression of SHMT2 and ILF2 in OSCC cells. Cell Counting Kit-8 (CCK-8) and colony formation assays appraised cell proliferation. Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling (TUNEL) staining was to estimate the apoptotic rate of cells. Further, wound healing and transwell assays verified the migration and invasion of cells. Western blot was adopted to detect the expression of factors related to apoptosis, migration, and epithelial–mesenchymal transition (EMT). The possible interaction of SHMT2 and ILF2 was predicted by a Molecular INTeraction (MINT) and BioGRID databases and determined using co-immunoprecipitation (IP) assay. Subsequently, ILF2 was overexpressed to investigate whether SHMT2 regulated OSCC progression by binding to ILF2. Results implied that SHMT2 possessed increased expression in OSCC cells, and OSCC cell viability, migration, invasion, EMT were inhibited and apoptosis was potentiated after its silencing. ILF2 bound to SHMT2 and ILF2 expression was downregulated after SHMT2 silencing in OSCC cells. Importantly, ILF2 overexpression abolished the suppressive role of SHMT2 interference in the progression of OSCC. Collectively, SHMT2 could promote the progression of OSCC by binding to ILF2.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| | - Yilei Che
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| | - Bin Xuan
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| | - Xiaozhen Wu
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| | - Hui Li
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
5
|
Wen-Jian Y, Song T, Jun T, Kai-Ying X, Jian-Jun W, Si-Hua W. NF45 promotes esophageal squamous carcinoma cell invasion by increasing Rac1 activity through 14-3-3ε protein. Arch Biochem Biophys 2018; 663:101-108. [PMID: 30550728 DOI: 10.1016/j.abb.2018.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
Nuclear factor 45 (NF-45) has been found to be markedly upregulated in several cancers, including esophageal squamous cell carcinoma (ESCC). However, the molecular mechanisms underlying its functions remain unclear. In this study, we confirm that overexpression of NF45 was frequently detected in ESCC tissues and was associated with poor outcome. Overexpression studies revealed that NF-45 promoted cell growth and invasion and upregulated Rac1/Tiam1 signalling via 14-3-3ε protein in ESCC cell lines. This novel mechanism linking upregulated NF45 expression to increased 14-3-3ε/Rac1/Tiam1 signalling and subsequent growth and invasion in ESCC may aid in identification of new therapeutic targets for this disease.
Collapse
Affiliation(s)
- Yao Wen-Jian
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tong Song
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tan Jun
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xu Kai-Ying
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wang Jian-Jun
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wang Si-Hua
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Expression and Clinical Significance of ILF2 in Gastric Cancer. DISEASE MARKERS 2017; 2017:4387081. [PMID: 28831206 PMCID: PMC5555027 DOI: 10.1155/2017/4387081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/30/2017] [Accepted: 07/02/2017] [Indexed: 01/29/2023]
Abstract
The aim of this study is to investigate the expression levels and clinical significance of ILF2 in gastric cancer. The mRNA and protein expression levels of ILF2 were, respectively, examined by quantitative real-time PCR (qRT-PCR) and Western blot from 21 paired fresh frozen GC tissues and corresponding normal gastric tissues. In order to analyze the expression pattern of ILF2 in GC, 60 paired paraffin-embedded GC slides and corresponding normal gastric slides were detected by immunohistochemistry (IHC) assay. The correlation between ILF2 protein expression levels and clinicopathological parameters, overall survival (OS), disease-free survival (DFS), and clinical prognosis were analyzed by statistical methods. Significantly higher levels of ILF2 were detected in GC tissues compared with normal controls at both mRNA and protein level. High expression of ILF2 was tightly correlated with depth of invasion, lymph node metastasis, pathological stage, and histological differentiation. Log-rank test showed that high expression of ILF2 was positively associated with poor clinical prognosis. Multivariate analysis identified that ILF2 was an independent prognostic factor for OS and DFS. Our findings suggest that ILF2 may be a valuable biomarker and a novel potential prognosis predictor for GC patients.
Collapse
|
7
|
Erdoğan Ö, Xie L, Wang L, Wu B, Kong Q, Wan Y, Chen X. Proteomic dissection of LPS-inducible, PHF8-dependent secretome reveals novel roles of PHF8 in TLR4-induced acute inflammation and T cell proliferation. Sci Rep 2016; 6:24833. [PMID: 27112199 PMCID: PMC4845005 DOI: 10.1038/srep24833] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/01/2016] [Indexed: 11/09/2022] Open
Abstract
Endotoxin (LPS)-induced changes in histone lysine methylation contribute to the gene-specific transcription for control of inflammation. Still unidentified are the chromatin regulators that drive the transition from a transcriptional-repressive to a transcriptional-active chromatin state of pro-inflammatory genes. Here, using combined approaches to analyze LPS-induced changes in both gene-specific transcription and protein secretion to the extracellular compartment, we characterize novel functions of the lysine demethylase PHF8 as a pro-inflammatory, gene-specific chromatin regulator. First, in the LPS-induced, acute-inflamed macrophages, PHF8 knockdown led to both a reduction of pro-inflammatory factors and an increase in a transcriptional-repressive code (H3K9me2) written by the methyltransferase G9a. Through unbiased quantitative secretome screening we discovered that LPS induces the secretion of a cluster of PHF8-dependent, 'tolerizable' proteins that are related to diverse extracellular pathways/processes including those for the activation of adaptive immunity. Specifically, we determined that PHF8 promotes T-cell activation and proliferation, thus providing the first link between the epigenetic regulation of inflammation and adaptive immunity. Further, we found that, in the acute-inflamed macrophages, the acute-active PHF8 opposes the H3K9me1/2-writing activity of G9a to activate specific protein secretions that are suppressed by G9a in the endotoxin-tolerant cells, revealing the inflammatory-phenotypic chromatin drivers that regulate the gene-specific chromatin plasticity.
Collapse
Affiliation(s)
- Özgün Erdoğan
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
| | - Ling Xie
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
| | - Li Wang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
- Department of Chemistry, Fudan University, Shanghai, China
| | - Bing Wu
- Departement of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
| | - Qing Kong
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
| | - Yisong Wan
- Departement of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, US
| | - Xian Chen
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
- Department of Chemistry, Fudan University, Shanghai, China
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, US
| |
Collapse
|
8
|
O'Rielly DD, Rahman P. Genetic, Epigenetic and Pharmacogenetic Aspects of Psoriasis and Psoriatic Arthritis. Rheum Dis Clin North Am 2015; 41:623-42. [PMID: 26476223 DOI: 10.1016/j.rdc.2015.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is a strong familial component to psoriatic disease as well as a complex array of genetic, immunologic, and environmental factors. The dominant genetic effect is located on chromosome 6p21.3 within the major histocompatibility complex region, accounting for one-third of genetic contribution. Genome-wide association studies (GWAS) identified additional genes, including skin barrier function, innate immune response, and adaptive immune response genes. To better understand disease susceptibility and progression requires replication in larger cohorts, fine-mapping efforts, new technologies, and functional studies of genetic variants, gene-gene interactions and gene-environmental interactions. New technologies available include next-generation sequencing, copy number variation analysis, and epigenetics.
Collapse
Affiliation(s)
- Darren D O'Rielly
- Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Philip Drive, Room 1J440, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Proton Rahman
- St. Clare's Mercy Hospital, Memorial University of Newfoundland, 154 Le Marchant Road, St. John's, Newfoundland and Labrador A1C 5B8, Canada.
| |
Collapse
|
9
|
Fishwick KJ, Kim E, Bronner ME. ILF-3 is a regulator of the neural plate border marker Zic1 in chick embryos. Dev Dyn 2012; 241:1325-32. [PMID: 22639388 DOI: 10.1002/dvdy.23809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2012] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The neural crest is a multipotent cell type unique to the vertebrate lineage and capable of differentiating into a large number of varied cell types, including ganglia of the peripheral nervous system, cartilage, and glia. An early step in neural crest specification occurs at the neural plate border, a region defined by the overlap of transcription factors of the Zic, Msx, and Pax families. RESULTS Here we identify a novel chick gene with close homology to double-stranded RNA-binding protein Interleukin enhancer binding factor 3 (ILF-3) in other species. Our results show that chick Ilf-3 is required for proper expression of the transcription factor, Zic-1, at the neural plate border. CONCLUSION We have identified a novel chick gene and show it has a role in the correct specification of Zic-1 at the neural plate border.
Collapse
Affiliation(s)
- K J Fishwick
- Division of Biology, California Institute of Technology, Pasadena, California, USA
| | | | | |
Collapse
|
10
|
Smith NL, Miskimins WK. Phosphorylation at serine 482 affects stability of NF90 and its functional role in mitosis. Cell Prolif 2011; 44:147-55. [PMID: 21401756 DOI: 10.1111/j.1365-2184.2011.00742.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES NF90 is a multifunctional double-strand RNA binding protein with documented roles in transcription, mRNA stability, translation, RNA processing and transport, and mitosis. It is a phosphoprotein that interacts with, and is a substrate for, several protein kinases. The study described here was initiated to gain better understanding of specific NF90 phosphorylation sites and their relationship to mechanisms by which NF90 performs its various functions. MATERIALS AND METHODS Phosphoproteomic studies have identified NF90 serine 482 (S482) as a major phosphorylation site in vivo. Site-specific mutations were introduced at this site and the mutated proteins were expressed in MCF7 cells by transfection. Western blotting was used to examine NF90 expression, stability, and responsiveness to protein kinase activators and inhibitors. Flow cytometry was used to examine effects of NF90 mutation on cell cycle progression. RESULTS Non-phosphorylatable mutant S482A was unstable compared to phosphomimetic S482E mutant. NF90-S482A expression was greatly enhanced by inhibiting proteasomal degradation or by activating PKC. Identical treatments had little effect on NF90-S482E. In contrast to WT NF90 or NF90-S482E, cells stably expressing NF90-S482A accumulated in M phase when treated with TPA. CONCLUSIONS Phosphorylation at S482 is important for NF90 stability and in regulating its functional role during mitosis. Based on the sequence surrounding S482, mitotic kinase PLK1 is a strong candidate for the enzyme that phosphorylates NF90 at this site.
Collapse
Affiliation(s)
- N L Smith
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | | |
Collapse
|
11
|
Zhou Q, Amar S. Identification of proteins differentially expressed in human monocytes exposed to Porphyromonas gingivalis and its purified components by high-throughput immunoblotting. Infect Immun 2006; 74:1204-14. [PMID: 16428770 PMCID: PMC1360359 DOI: 10.1128/iai.74.2.1204-1214.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To characterize the roles of Porphyromonas gingivalis and its components in disease processes, we investigated the cytokine profiles induced by live P. gingivalis, its lipopolysaccharide (LPS), and its major fimbrial protein, fimbrillin (FimA). A cytokine antibody array revealed that human monocyte-derived macrophages were induced to produce chemokines (e.g., monocyte chemoattractant protein 1, macrophage inflammatory protein 1beta [MIP-1beta], and MIP-3alpha) as early as 1 h after exposure to P. gingivalis, with production declining after 24 h of exposure. As expected, an extensive repertoire of inflammatory mediators increased subsequent to infection, most predominantly tumor necrosis factor alpha (TNF-alpha), interleukin 1beta (IL-1beta), IL-6, IL-10, and granulocyte-macrophage colony-stimulating factor. The induction of cytokines by P. gingivalis was not triggered simply by bacterial cell surface components, since purified P. gingivalis LPS and FimA induced similar patterns of cytokines, while the pattern of cytokines induced by live P. gingivalis was significantly different, indicating that the host defense system senses live bacteria differently than it does the cell surface components LPS and FimA. To further understand the mechanisms by which live P. gingivalis and its components exert their effects, we used a high-throughput immunoblot screening approach (Becton-Dickinson PowerBlot) to analyze intracellular proteins involved in P. gingivalis infection in human macrophages. Exposure of human macrophages to either live P. gingivalis, its LPS, or its FimA protein led to the up-regulation of 12, 8, and 10 proteins and the down-regulation of 15, 8, and 17 proteins, respectively. The expression of proteins involved in gene transcription (e.g., monocyte enhancer factor 2D [MEF2D], signal transducer and activator of transcription 1 [STAT1], STAT3, STAT6, and IL enhancer binding factors [ILF3]), of protein kinases (e.g., mitogen-activated protein kinase 3 [MAPK3], MAP3K8, double-stranded RNA-activated protein kinase [PRKR], and MAP2K4), and of proteins involved in immune responses (e.g., TNF super family member 6 [TNFSF6] and interferon-induced protein with tetratricopeptide repeat 4 [IFIT4]), apoptosis (e.g., genes associated with retinoid interferon-induced mortality 19 [GRIM19]), and other fundamental cellular processes (e.g., clathrin heavy-chain polypeptide, culreticulin, and Ras-associated protein RAB27A) was found to be modulated differentially by P. gingivalis, LPS, and FimA. These differential changes are interpreted as preferential signal pathway activation in host immune/inflammatory responses to P. gingivalis infection.
Collapse
Affiliation(s)
- Qingde Zhou
- Department of Periodontology and Oral Biology, School of Dental Medicine, Boston University Medical Center, 700 Albany Street W-201E, Boston, MA 02118, USA
| | | |
Collapse
|
12
|
Yuan K, Hong TM, Chen JJW, Tsai WH, Lin MT. Syndecan-1 up-regulated by ephrinB2/EphB4 plays dual roles in inflammatory angiogenesis. Blood 2004; 104:1025-33. [PMID: 15126321 DOI: 10.1182/blood-2003-09-3334] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EphrinB2 and EphB4, its cognate receptor, are important in the vascular development of the mouse embryo. Their roles in human inflammatory angiogenesis, however, are not well understood. By examining hyperinflammatory lesions, we saw that ephrinB2 was predominantly expressed in macrophage-like cells and EphB4 in small venules. Because macrophages usually transmigrate through postcapillary venules during inflammation, we wanted to explore the downstream effects of EphB4 after binding to ephrinB2. By using cDNA microarray technique and following reverse transcriptase-polymerase chain reaction (RT-PCR), we found that syntenin and syndecan-1 were up-regulated in EphB4-positive endothelial cells dose dependently and time dependently after stimulation with preclustered ephrinB2. In vitro, ephrinB2 suppressed the angiogenic effects of basic fibroblast growth factor (bFGF) on EphB4-positive endothelial cells, partially due to syndecan-1's competition with fibroblast growth factor receptor (FGFR) for bFGF. However, ephrinB2 exhibited angiogenic effects in vivo, possibly due to an inflammation-associated enzyme-heparanase. The enzymes could convert the inhibitory effect of ephrinB2 on EphB4-positive endothelial cells to an activating effect by removing poorly sulfated side chains of up-regulated syndecan-1 ectodomain. Depending on the presence of heparanases, the roles of syndecan-1 may be opposite in different physiological settings.
Collapse
Affiliation(s)
- Kuo Yuan
- Institute of Medical Sciences, Tzu Chi University, No. 701, Jung-Yang Rd, Section 3, Hualien, Taiwan 970
| | | | | | | | | |
Collapse
|
13
|
Gwizdek C, Ossareh-Nazari B, Brownawell AM, Evers S, Macara IG, Dargemont C. Minihelix-containing RNAs mediate exportin-5-dependent nuclear export of the double-stranded RNA-binding protein ILF3. J Biol Chem 2003; 279:884-91. [PMID: 14570900 DOI: 10.1074/jbc.m306808200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The karyopherin-related nuclear transport factor exportin-5 preferentially recognizes and transports RNAs containing minihelix motif, a structural cis-acting export element that comprises a double-stranded stem (>14 nucleotides) with a base-paired 5' end and a 3-8-nucleotide protruding 3' end. This structural motif is present in various small cellular and viral polymerase III transcripts such as the adenovirus VA1 RNA (VA1). Here we show that the double-stranded RNA-binding protein, ILF3 (interleukin enhancer binding factor 3) preferentially binds minihelix motif. Gel retardation assays and glutathione S-transferase pull-down experiments revealed that ILF3, exportin-5, RanGTP, and VA1 RNA assembled in a quaternary complex in which the RNA moiety bridges the interaction between ILF3 and exportin-5. Formation of this complex is facilitated by the ability of both exportin-5 and ILF3 to mutually increase their apparent affinity for VA1 RNA. Using microinjection in the nucleus of HeLa cells and transfection experiments, we show here that formation of the cooperative RanGTP-dependent RNA/ILF3/exportin-5 complex promotes the co-transport of VA1 and ILF3 from the nucleus to the cytoplasm. Exportin-5 thus appears as the first example of a nuclear export receptor that mediates RNA export but also promotes transport of proteinaceous cargo through appropriate and specific RNA adaptors.
Collapse
Affiliation(s)
- Carole Gwizdek
- Institut Jacques Monod, Unité Mixte de Recherche 7592, CNRS, Universités Paris VI et VII, 2 Place Jussieu, Tour 43, Paris 75251 Cedex 05, France
| | | | | | | | | | | |
Collapse
|
14
|
Brownawell AM, Macara IG. Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins. J Cell Biol 2002; 156:53-64. [PMID: 11777942 PMCID: PMC2173575 DOI: 10.1083/jcb.200110082] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have identified a novel human karyopherin (Kap) beta family member that is related to human Crm1 and the Saccharomyces cerevisiae protein, Msn5p/Kap142p. Like other known transport receptors, this Kap binds specifically to RanGTP, interacts with nucleoporins, and shuttles between the nuclear and cytoplasmic compartments. We report that interleukin enhancer binding factor (ILF)3, a double-stranded RNA binding protein, associates with this Kap in a RanGTP-dependent manner and that its double-stranded RNA binding domain (dsRBD) is the limiting sequence required for this interaction. Importantly, the Kap interacts with dsRBDs found in several other proteins and binding is blocked by double-stranded RNA. We find that the dsRBD of ILF3 functions as a novel nuclear export sequence (NES) in intact cells, and its ability to serve as an NES is dependent on the expression of the Kap. In digitonin-permeabilized cells, the Kap but not Crm1 stimulated nuclear export of ILF3. Based on the ability of this Kap to mediate the export of dsRNA binding proteins, we named the protein exportin-5. We propose that exportin-5 is not an RNA export factor but instead participates in the regulated translocation of dsRBD proteins to the cytoplasm where they interact with target mRNAs.
Collapse
Affiliation(s)
- Amy M Brownawell
- Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
15
|
Georgopoulou A, Markoulatos P, Spyrou N, Vamvakopoulos NC. Improved genotyping vaccine and wild-type poliovirus strains by restriction fragment length polymorphism analysis: clinical diagnostic implications. J Clin Microbiol 2000; 38:4337-42. [PMID: 11101561 PMCID: PMC87602 DOI: 10.1128/jcm.38.12.4337-4342.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The combination of preventive vaccination and diagnostic typing of viral isolates from patients with clinical poliomyelitis constitutes our main protective shield against polioviruses. The restriction fragment length polymorphism (RFLP) adaptation of the reverse transcriptase (RT)-PCR methodology has advanced diagnostic genotyping of polioviruses, although further improvements are definitely needed. We report here on an improved RFLP procedure for the genotyping of polioviruses. A highly conserved segment within the 5' noncoding region of polioviruses was selected for RT-PCR amplification by the UC(53)-UG(52) primer pair with the hope that it would be most resistant to the inescapable genetic alteration-drift experienced by the other segments of the viral genome. Complete inter- and intratypic genotyping of polioviruses by the present RFLP method was accomplished with a minimum set of four restriction endonucleases (HaeIII, DdeI, NcoI, and AvaI). To compensate for potential genetic drift within the recognition sites of HaeIII, DdeI, or NcoI in atypical clinical samples, the RFLP patterns generated with HpaII and StyI as replacements were analyzed. The specificity of the method was also successfully assessed by RFLP analysis of 55 reference nonpoliovirus enterovirus controls. The concerted implementation of these conditional protocols for diagnostic inter- and intratypic genotyping of polioviruses was evaluated with 21 clinical samples with absolute success.
Collapse
Affiliation(s)
- A Georgopoulou
- Department of Virology, Hellenic Pasteur Institute, 11521, Athens, Greece
| | | | | | | |
Collapse
|
16
|
Tang J, Kao PN, Herschman HR. Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3. J Biol Chem 2000; 275:19866-76. [PMID: 10749851 DOI: 10.1074/jbc.m000023200] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arginine methylation is a common post-translation modification found in many proteins. Protein-arginine methyltransferase I (PRMT1) contributes >90% of type I protein-arginine methyltransferase activity in cells and tissues. To expand our knowledge on the regulation and role of PRMT1 in cells, we used the yeast two-hybrid system to identify proteins that interact with PRMT1. One of the interacting proteins we cloned is interleukin enhancer-binding factor 3 (ILF3), also known as M phase phosphoprotein 4. ILF3 is closely related to nuclear factor 90 (NF90). Using an immunofluorescence analysis, we determined that ILF3 and PRMT1 co-localize in the nucleus. Moreover, PRMT1 and ILF3 co-precipitate in immunoprecipitation assays and can be isolated together in "pull-down" experiments using recombinant fusion proteins. ILF3 is a robust substrate for methylation by PRMT1 and can modulate PRMT1 activity in in vitro methylation assays. Deletion studies demonstrated that the COOH-terminal region of ILF3, which is rich in arginine, glycine, and serine, is responsible for the strong interaction between PRMT1 and ILF3 and is the site of ILF3 methylation by PRMT1. Although ILF3 and NF90 are highly similar, they differ in their carboxyl-terminal regions. Because of this difference, NF90 does not interact with PRMT1, is a much poorer substrate than ILF3 for PRMT1-dependent methylation, and does not modulate PRMT1 enzyme activity.
Collapse
Affiliation(s)
- J Tang
- Molecular Biology Institute and the Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
17
|
Vakalis N, Spanakos G, Patsoula E, Vamvakopoulos NC. Improved detection of Dirofilaria repens DNA by direct polymerase chain reaction. Parasitol Int 1999; 48:145-50. [PMID: 11269275 DOI: 10.1016/s1383-5769(99)00012-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diagnosis of human infection by Dirofilaria repens, depends mainly on microscopic evaluation of tissue cross-sections and the macroscopic characteristics of the worm. Tissue degeneration and/or poor specimen preparation practices however, often render many cases of subcutaneous dirofilariasis elusive to such morphological diagnostic approaches. The early PCR protocols, developed to satisfy these complex diagnostic needs, failed to amplify dirofilariae DNA from formalin preserved material. To overcome these difficulties, we developed an improved PCR protocol using a set of primers designed to amplify a rather stable, highly repetitive D. repens-specific genomic DNA target. We report the performance of this protocol with a large variety of dirofilariae infected DNA specimens, including those extracted from formalin preserved biological material for up to 20 days. Our findings support its potential application to routine clinical diagnosis.
Collapse
Affiliation(s)
- N Vakalis
- Department of Parasitology, Entomology and Tropical Diseases, National School of Public Health, Athens, Attki, Greece
| | | | | | | |
Collapse
|