1
|
Preparation of Chicken Anemia Virus (CAV) Virus-Like Particles and Chicken Interleukin-12 for Vaccine Development Using a Baculovirus Expression System. Pathogens 2019; 8:pathogens8040262. [PMID: 31771230 PMCID: PMC6963176 DOI: 10.3390/pathogens8040262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 01/24/2023] Open
Abstract
Chicken infectious anemia (CIA) is a poultry disease that causes huge economic losses in the poultry industry worldwide. Commercially available CIA vaccines are derived from wild-type chicken anemia viruses (CAVs) by serial passage in cells or chicken embryos. However, these vaccinal viruses are not completely attenuated; therefore, they can be transmitted vertically and horizontally, and may induce clinical symptoms in young birds. In this study, we sought to eliminate these issues by developing a subunit vaccine exploiting the CAV structural proteins, engineering recombinant baculovirus-infected Spodoptera frugiperda (Sf9) cells that contained both the viral protein 1 (VP1) and VP2 of CAV. Moreover, we produced single-chain chicken interleukin-12 (chIL-12) in the same system, to serve as an adjuvant. The recombinant VP1 was recognized by chicken anti-CAV polyclonal antibodies in Western blotting and immunofluorescence assays, and the bioactivity of the recombinant chIL-12 was confirmed by stimulating interferon-γ (IFN-γ) secretion in chicken splenocytes. Furthermore, the ability of the recombinant VP1 to generate self-assembling virus-like particles (VLPs) was confirmed by transmission electron microscopy. Specific pathogen-free (SPF) chickens inoculated with VLPs and co-administered the recombinant chIL-12 induced high CAV-specific antibodies and cell-mediated immunity. Taken together, the VLPs produced by the baculovirus expression system have the potential to be a safe and effective CIA vaccine. Finally, we demonstrated the utility of recombinant chIL-12 as an adjuvant for poultry vaccine development.
Collapse
|
2
|
Wu HC, Chen YS, Shen PC, Shien JH, Lee LH, Chiu HH. Production and characterization of active recombinant interleukin-12/eGFP fusion protein in stably-transfected DF1 chicken cells. Biotechnol Prog 2015; 31:641-9. [PMID: 25583174 DOI: 10.1002/btpr.2052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/16/2014] [Indexed: 11/06/2022]
Abstract
The adjuvant activity of chicken interleukin-12 (chIL-12) protein has been described as similar to that of mammalian IL-12. Recombinant chIL-12 can be produced using several methods, but chIL-12 production in eukaryotic cells is lower than that in prokaryotic cells. Stimulating compounds, such as dimethyl sulfoxide (DMSO), can be added to animal cell cultures to overcome this drawback. In this study, we constructed a cell line, DF1/chIL-12 which stably expressed a fusion protein, chIL-12 and enhanced green fluorescent protein (eGFP) connected by a (G4 S)3 linker sequence. Fusion protein production was increased when cells were cultured in the presence of DMSO. When 1 × 10(6) DF1/chIL-12 cells were inoculated in a T-175 flask containing 30 mL of media, incubated for 15 h, and further cultivated in the presence of 4% DMSO for 48 h, the production of total fusion protein was mostly enhanced compared with the production of total fusion protein by using cell lysates induced with DMSO at other concentrations. The concentrations of the unpurified and purified total fusion proteins in cell lysates were 2,781 ± 2.72 ng mL(-1) and 2,207 ± 3.28 ng mL(-1) , respectively. The recovery rate was 79%. The fusion protein stimulated chicken splenocytes to produce IFN-γ, which was measured using an enzyme-linked immunosorbent assay, in the culture supernatant, indicating that treating DF1/chIL-12 cells with DMSO or producing chIL-12 in a fusion protein form does not have adverse effects on the bioactivity of chIL-12.
Collapse
Affiliation(s)
- Hsing Chieh Wu
- Dept. of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Yu San Chen
- Dept. of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Pin Chun Shen
- Dept. of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jui Hung Shien
- Dept. of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Long Huw Lee
- Dept. of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Hua Hsien Chiu
- Dept. of Biotechnology, College of Environmental and Life Science, Foo Yin University, Kaohsiung, 831, Taiwan
| |
Collapse
|
3
|
Paul M, Ma JKC. Plant-made immunogens and effective delivery strategies. Expert Rev Vaccines 2014; 9:821-33. [DOI: 10.1586/erv.10.88] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
4
|
Green factory: Plants as bioproduction platforms for recombinant proteins. Biotechnol Adv 2012; 30:1171-84. [DOI: 10.1016/j.biotechadv.2011.08.020] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/24/2011] [Accepted: 08/30/2011] [Indexed: 12/15/2022]
|
5
|
Pelosi A, Shepherd R, Walmsley AM. Delivery of plant-made vaccines and therapeutics. Biotechnol Adv 2012; 30:440-8. [DOI: 10.1016/j.biotechadv.2011.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 07/14/2011] [Accepted: 07/25/2011] [Indexed: 11/17/2022]
|
6
|
Dolan MC, Medrano G, McMickle A, Cramer CL. Tools of the trade: developing antibody-based detection capabilities for recombinant proteins. Methods Mol Biol 2012; 824:65-105. [PMID: 22160894 DOI: 10.1007/978-1-61779-433-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein-specific antibodies serve as critical tools for detection, quantification, and characterization of recombinant proteins. Perhaps the most important and widely used antibody-based procedures for recombinant protein applications are Western immunoblotting and enzyme-linked immunosorbent assays (ELISAs). These analyses require well-characterized, sensitive, and high-affinity antibodies that specifically and selectively recognize the recombinant target protein in the native or denatured form. Although the number of commercially available antibodies is quite substantial and rapidly growing, the appropriate antibody tools for many applications currently do not exist. In this chapter, strategies to develop and characterize both polyclonal and monoclonal antibodies directed against a specific protein of interest are discussed. Experimental strategies and methods are presented for producing and selecting the best antibodies and optimizing protocols for Western analyses, ELISAs, and other applications. Once antibody and procedure optimization is completed to ensure specificity, sensitivity, accuracy, and reliability, these immune-based approaches can now serve as powerful and enabling tools in the characterization, detection and diagnostics, structure/function analysis, and quality assessment of recombinant proteins.
Collapse
Affiliation(s)
- Maureen C Dolan
- Arkansas Biosciences Institute, Arkansas State University, State University, AR, USA.
| | | | | | | |
Collapse
|
7
|
Medrano G, Dolan MC, Condori J, Radin DN, Cramer CL. Quality assessment of recombinant proteins produced in plants. Methods Mol Biol 2012; 824:535-64. [PMID: 22160919 DOI: 10.1007/978-1-61779-433-9_29] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Plant-based expression technologies for recombinant proteins have begun to receive acceptance for pharmaceuticals and other commercial markets. Protein products derived from plants offer safer, more cost-effective, and less capital-intensive alternatives to traditional manufacturing systems using microbial fermentation or animal cell culture bioreactors. Moreover, plants are now known to be capable of expressing bioactive proteins from a diverse array of species including animals and humans. Methods development to assess the quality and performance of proteins manufactured in plants are essential to support the QA/QC demands as plant-produced protein products transition to the commercial marketplace. Within the pharmaceutical arena, process validation and acceptance criteria for biological products must comply with the Food and Drug Administration (FDA) and ICH Q6B guidelines in order to initiate the regulatory approval process. Detailed product specifications will also need to be developed and validated for plant-made proteins for the bioenergy, food, chemical synthesis, or research reagent markets.We have, therefore, developed assessment methods for important qualitative and quantitative parameters of the products and the manufacturing methods utilized in plant-based production systems. In this chapter, we describe a number of procedures to validate product identity and characteristics including mass analyses, antibody cross-reactivity, N-terminal sequencing, and bioactivity. We also address methods for routine assessment of yield, recovery, and purity. The methods presented are those developed for the synthesis and recovery of the avian cytokine, chicken interleukin-12 (ChIL-12), produced in the leaves of Nicotiana benthamiana. The ChIL-12 protein used as a model for this chapter includes a C-terminal histidine epitope (HIS-tag) and, thus, these methods may be directly applicable to other HIS-tagged proteins produced in plants. However, the overall strategy presented using the ChIL-12(HIS) example should provide the basis of standard procedures for assessing the quality of other plant-based protein products and manufacturing systems.
Collapse
Affiliation(s)
- Giuliana Medrano
- Arkansas Biosciences Institute, Arkansas State University, State University, AR, USA
| | | | | | | | | |
Collapse
|
8
|
Su BS, Yin HS, Chiu HH, Hung LH, Huang JP, Shien JH, Lee LH. Immunoadjuvant activities of a recombinant chicken IL-12 in chickens vaccinated with Newcastle disease virus recombinant HN protein. Vet Microbiol 2011; 151:220-8. [DOI: 10.1016/j.vetmic.2011.02.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 02/14/2011] [Accepted: 02/17/2011] [Indexed: 11/26/2022]
|
9
|
Xu J, Ge X, Dolan MC. Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. Biotechnol Adv 2011; 29:278-99. [DOI: 10.1016/j.biotechadv.2011.01.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 12/24/2010] [Accepted: 01/02/2011] [Indexed: 12/16/2022]
|
10
|
Granell A, Fernández del-Carmen A, Orzáez D. In planta production of plant-derived and non-plant-derived adjuvants. Expert Rev Vaccines 2010; 9:843-58. [PMID: 20673009 DOI: 10.1586/erv.10.80] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recombinant antigen production in plants is a safe and economically sound strategy for vaccine development, particularly for oral/mucosal vaccination, but subunit vaccines usually suffer from weak immunogenicity and require adjuvants that escort the antigens, target them to relevant sites and/or activate antigen-presenting cells for elicitation of protective immunity. Genetic fusions of antigens with bacterial adjuvants as the B subunit of the cholera toxin have been successful in inducing protective immunity of plant-made vaccines. In addition, several plant compounds, mainly plant defensive molecules as lectins and saponins, have shown strong adjuvant activities. The molecular diversity of the plant kingdom offers a vast source of non-bacterial compounds with adjuvant activity, which can be assayed in emerging plant manufacturing systems for the design of new plant vaccine formulations.
Collapse
Affiliation(s)
- Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Spain
| | | | | |
Collapse
|
11
|
Su BS, Chiu HH, Lin CC, Shien JH, Yin HS, Lee LH. Adjuvant activity of chicken interleukin-12 co-administered with infectious bursal disease virus recombinant VP2 antigen in chickens. Vet Immunol Immunopathol 2010; 139:167-75. [PMID: 21035196 DOI: 10.1016/j.vetimm.2010.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/01/2010] [Accepted: 10/04/2010] [Indexed: 10/19/2022]
Abstract
A recombinant fowlpox virus (rFPV/VP2) expressing infectious bursal diseases virus (IBDV) VP2 gene has been constructed. After purification and identification of rFPV/VP2, the adjuvant activity of the recombinant chicken IL-12 (rchIL-12), synthesized by our previous construct of rFPV/chIL-12, in rFPV/VP2-expressed rVP2 antigen was assessed in one-week-old specific-pathogen free chickens. The results indicated that rchIL-12 alone or rchIL-12 plus mineral oil (MO) co-administered with rVP2 antigen significantly enhanced the production of serum neutralization (SN) antibody against IBDV, compared to those with MO alone. The SN titers in groups receiving rVP2 antigen with MO alone were more inconsistent after vaccination. On the other hand, rchIL-12 significantly stimulated IFN-γ production in serum and in splenocyte cultured supernatant, suggesting that rchIL-12 alone or plus MO significantly induced a cell-mediated immune response. Finally, bursal lesion protection from very virulent IBDV (vvIBDV) challenge in chickens receiving rVP2 antigen with rchIL-12 alone or plus MO was much more effective than that with MO alone at two weeks after boosting. Taken together, rchIL-12 alone augmented in vivo the induction of a primary and also a secondary SN antibody production and a cell-mediated immunity against IBDV rVP2 antigen, which conferred the enhancement of bursal lesion protective efficacy from vvIBDV challenge. These data indicated that a potential for chIL-12 as immunoadjuvant for chicken vaccine development such as IBDV rVP2 antigen.
Collapse
Affiliation(s)
- Bor Sheu Su
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan
| | | | | | | | | | | |
Collapse
|