1
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
2
|
Abdolvahab MH, Safari M, Hasannejad F, Asefi N, Salimi A, Nazari M. Optimization of a recombinant BlaR-CTD protein formulation using the response surface methodology. J Biol Eng 2024; 18:4. [PMID: 38212764 PMCID: PMC10785353 DOI: 10.1186/s13036-023-00399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024] Open
Abstract
The sequence of a carboxy-terminal of the β-lactam sensor-transducer protein (BlaR-CTD) from Bacillus licheniformis ATCC14580 was extracted from US7745193B2 patent and expressed in E. coli using pColdI vector as a soluble His-tag recombinant protein. In this study, several excipients were used to improve the stability of recombinant BlaR-CTD and obtain the optimal formulation for this protein using response surface methodology (RSM)/ Central Composite Design (CCD). Total protein concentration was measured by UV spectroscopy and the Bradford test. A total of 7 various factors were designed using four different excipients including Glycerol, Sucrose, Triton x-100, and Tween-20, and three different buffers like Tris, Borate, and PBS. By obtaining suitable excipients and buffer i.e. glycerol and sucrose, pH ranging from 7 to 9 were evaluated. The pH 7.62, glycerol 15.35%, and sucrose 152.52 mM were determined as the most suitable for improving the thermal stability of recombinant BlaR-CTD.
Collapse
Affiliation(s)
- Mohadeseh Haji Abdolvahab
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Mojdeh Safari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farkhonde Hasannejad
- Genetic Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Nika Asefi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Genetic Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Alireza Salimi
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Mahboobeh Nazari
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Weber J, Buske J, Mäder K, Garidel P, Diederichs T. Oxidation of polysorbates - An underestimated degradation pathway? Int J Pharm X 2023; 6:100202. [PMID: 37680877 PMCID: PMC10480556 DOI: 10.1016/j.ijpx.2023.100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023] Open
Abstract
To ensure the stability of biologicals over their entire shelf-life, non-ionic surface-active compounds (surfactants) are added to protect biologics from denaturation and particle formation. In this context, polysorbate 20 and 80 are the most used detergents. Despite their benefits of low toxicity and high biocompatibility, specific factors are influencing the intrinsic stability of polysorbates, leading to degradation, loss in efficacy, or even particle formation. Polysorbate degradation can be categorized into chemical or enzymatic hydrolysis and oxidation. Under pharmaceutical relevant conditions, hydrolysis is commonly originated from host cell proteins, whereas oxidative degradation may be caused by multiple factors such as light, presence of residual metal traces, peroxides, or temperature, which can be introduced upon manufacturing or could be already present in the raw materials. In this review, we provide an overview of the current knowledge on polysorbates with a focus on oxidative degradation. Subsequently, degradation products and key characteristics of oxidative-mediated polysorbate degradation in respect of different types and grades are summarized, followed by an extensive comparison between polysorbate 20 and 80. A better understanding of the radical-induced oxidative PS degradation pathway could support specific mitigation strategies. Finally, buffer conditions, various stressors, as well as appropriate mitigation strategies, reagents, and alternative stabilizers are discussed. Prior manufacturing, careful consideration and a meticulous risk-benefit analysis are highly recommended in terms of polysorbate qualities, buffers, storage conditions, as well as mitigation strategies.
Collapse
Affiliation(s)
- Johanna Weber
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Karsten Mäder
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Patrick Garidel
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Tim Diederichs
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| |
Collapse
|
4
|
Wuchner K, Yi L, Chery C, Nikels F, Junge F, Crotts G, Rinaldi G, Starkey JA, Bechtold-Peters K, Shuman M, Leiss M, Jahn M, Garidel P, de Ruiter R, Richer SM, Cao S, Peuker S, Huille S, Wang T, Brun VL. Industry Perspective on the Use and Characterization of Polysorbates for Biopharmaceutical Products Part 2: Survey Report on Control Strategy Preparing for the Future. J Pharm Sci 2022; 111:2955-2967. [PMID: 36002077 DOI: 10.1016/j.xphs.2022.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Polysorbate (PS) 20 and 80 are the main surfactants used to stabilize biopharmaceutical products. Industry practices on various aspects of PS based on a confidential survey and following discussions by 16 globally acting major biotechnology companies is presented in two publications. Part 1 summarizes the current practice and use of PS during manufacture in addition to aspects like current understanding of the (in)stability of PS, the routine QC testing and control of PS, and selected regulatory aspects of PS.1 The current part 2 of the survey focusses on understanding, monitoring, prediction, and mitigation of PS degradation pathways in order to propose an effective control strategy. The results of the survey and extensive cross-company discussions are put into relation with currently available scientific literature.
Collapse
Affiliation(s)
- Klaus Wuchner
- Janssen R&D, DPDS BTDS Analytical Development, Hochstr. 201, 8200 Schaffhausen, Switzerland.
| | - Linda Yi
- Analytical Development, Biogen, Morrisville, NC 27709, USA
| | - Cyrille Chery
- UCB, Analytical Development Sciences for Biologicals, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Felix Nikels
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany
| | - Friederike Junge
- Analytical Research and Development, NBE Analytical R&D, AbbVie Deutschland GmbH& Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - George Crotts
- GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Gianluca Rinaldi
- Merck Serono SpA, Guidonia Montecelio, Italy, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Jason A Starkey
- Pfizer, Inc. Biotherapeutics Pharmaceutical Sciences, Analytical Research and Development 875 W. Chesterfield Parkway, Chesterfield, MO 63017, USA
| | | | - Melissa Shuman
- GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Michael Leiss
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377, Germany
| | - Michael Jahn
- Lonza AG, Drug Product Services, Hochbergerstr. 60G, CH-4057 Basel, Switzerland
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany
| | - Rien de Ruiter
- Byondis B.V., Downstream Processing, Nijmegen, the Netherlands
| | - Sarah M Richer
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Shawn Cao
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Sebastian Peuker
- Bayer AG, Product Supply, Analytical Development and Clinical QC for Biotech Products, Friedrich-Ebert-Str. 217-233, 42117 Wuppertal, Germany
| | - Sylvain Huille
- Sanofi R&D, Biologics Drug Products Development,13 quai Jules Guesde, 94403 Vitry-sur Seine, France
| | - Tingting Wang
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Virginie Le Brun
- Lonza AG, Drug Product Services, Hochbergerstr. 60G, CH-4057 Basel, Switzerland
| |
Collapse
|
5
|
Enhanced oral absorption of teriparatide with therapeutic potential for management of osteoporosis. J Control Release 2022; 349:502-519. [PMID: 35835400 DOI: 10.1016/j.jconrel.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
In this study, a system for oral delivery of recombinant human parathyroid hormone [rhPTH(1-34); teriparatide (TRP)] was developed to enhance oral absorption and to demonstrate an equivalent therapeutic effect to that of subcutaneous (SC) TRP injection. The solid oral formulation of TRP was prepared by electrostatic complexation with l-lysine-linked deoxycholic acid (LDA) and deoxycholic acid (DA) at a molar ratio of 1:5:7 in the aqueous dispersion of non-ionic n-dodecyl-β-d-maltoside (DM) at a 1:15 weight ratio, followed by freeze-drying the dispersal, yielding TRP(1:5:7)-15. As expected, TRP(1:5:7)-15 showed a 414% increase in permeability across the Caco-2/HT29-MTX-E12 cell monolayer, resulting in a 13.0-fold greater oral bioavailability compared with free TRP. In addition, the intestinal transport mechanisms in the presence of specific inhibitors of clathrin-mediated endocytosis, macropinocytosis, and bile acid transporters revealed 44.4%, 28.7%, and 51.2% decreases in transport, respectively, confirming that these routes play crucial roles in the permeation of TRP in TRP(1:5:7)-15. Notably, this formulation showed similar activation of the release of cyclic adenosine monophosphate (cAMP) compared with TRP, suggesting equivalent efficacy in the parathyroid hormone receptor-adenylate cyclase system of osteosarcoma cells. Furthermore, oral TRP(1:5:7)-15 (equivalent to 0.4 mg/kg TRP) demonstrated increases in bone mineral density (36.9%) and trabecular thickness (31.3%) compared with untreated glucocorticoid-induced osteoporotic mice. Moreover, the elevated levels of biomarkers of bone formation, including osteocalcin, were also comparable with those after SC injection of TRP (0.02 mg/kg). These findings suggest that TRP(1:5:7)-15 can be used as an effective oral therapy for the management of osteoporosis.
Collapse
|
6
|
Wang Q, Zhang C, Li Z, Guo F, Zhang J, Liu Y, Su Z. High hydrostatic pressure refolding of highly hydrophobic protein: A case study of recombinant human interferon β-1b from inclusion bodies. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Chen W, Ross A, Steinhuber B, Hoffmann G, Oltra NS, Ravuri SKK, Bond S, Bell C, Kopf R. The development and qualification of liquid adsorption chromatography for poloxamer 188 characterization. J Chromatogr A 2021; 1652:462353. [PMID: 34237484 DOI: 10.1016/j.chroma.2021.462353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/19/2022]
Abstract
Poloxamer 188 (P188) is formulated in proteinaceous therapeutics as an alternative surfactant to polysorbate because of its good chemical stability and surfactant properties, which enable interfacial protection, preventing visible and sub-visible particle formation. However, due to the nature of polymer heterogeneity and limited analytical approaches to resolve the superimposed components of P188, the impact of its quality variance on protein stability is still not well understood. In this study, we developed an analytical method to evaluate the components of P188 as a function of the length of polypropylene oxide (PPO), by maintaining polyethylene oxide (PEO) at the critical point of adsorption (CPA) to eliminate its chromatographic interference. The effectiveness of the separation was confirmed by nuclear magnetic resonance (NMR) spectroscopy and mass spectroscopy (MS) of the individual fractions corresponding to each peak. Additionally, a design of experiments (DoE) and method qualification were carried out to identify and optimize the key operation parameters, including column temperature and evaporative light scattering detector (ELSD) settings that need to be strictly controlled for reliable analytical results. In conclusion, this method is sensitive and reliable to compare the quality variance of commercial P188 and is suitable for routine quality control purposes. The application of this method could help in further understanding the Critical Material Attributes (CMA) that may affect the quality attributes of proteins in formulations.
Collapse
Affiliation(s)
- Wei Chen
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Alfred Ross
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Bernd Steinhuber
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Gabriel Hoffmann
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | | | | | - Steven Bond
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Christian Bell
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Robert Kopf
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland..
| |
Collapse
|
8
|
Abbasi S, Farahani H, Lanjanian H, Taheri M, Firoozpour L, Davoodi J, Pirkalkhoran S, Riazi G, Pooyan S. Site Directed Disulfide PEGylation of Interferon-β-1b with Fork Peptide Linker. Bioconjug Chem 2020; 31:708-720. [PMID: 31951391 DOI: 10.1021/acs.bioconjchem.9b00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The attachment of PEG to biopharmaceuticals has been applied for enhancement of bioavailability and improved stability. The PEG polymer is highly hydrated; thus effective attachment to inaccessible sites could be hindered. We have devised a scheme to address this issue by introducing a considerable distance between PEG and protein by addition of a linear peptide, appended to long chained reactive linkers. Second, the position of PEG conjugation directly affects biological activity. Accordingly, a disulfide bond could be considered as an ideal choice for site directed PEGylation; but reactivity of both thiol moieties to bridging reagent is critical for maintenance of protein structure. In our design, a forked structure with two arms provides essential flexibility to account for dissociation of reduced cysteines. An efficient yield for disulfide PEGylation of IFN-β1b was attained and specificity, biophysical characterization, biological activity, and pharmacokinetics were surveyed.
Collapse
Affiliation(s)
- Shayan Abbasi
- Institute of Biochemistry and Biophysics, University of Tehran, PO Code 1417614335, Tehran, Iran.,Rooyan Darou Pharmaceutical Company, PO Code 15996-89111, Tehran, Iran
| | - Homa Farahani
- Department of Microbiology, School of Biology, Faculty of Science, University of Tehran, PO Code 1417466191, Tehran, Iran
| | - Hossein Lanjanian
- Institute of Biochemistry and Biophysics, University of Tehran, PO Code 1417614335, Tehran, Iran
| | - Mohammad Taheri
- Rooyan Darou Pharmaceutical Company, PO Code 15996-89111, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, PO Code 14174, Tehran, Iran
| | - Jamshid Davoodi
- Institute of Biochemistry and Biophysics, University of Tehran, PO Code 1417614335, Tehran, Iran
| | - Sama Pirkalkhoran
- Department of Biology, Faculty of Basic Science, Islamic Azad University of Central Tehran Branch, PO Code 1477893855, Tehran, Iran
| | - GholamHossein Riazi
- Institute of Biochemistry and Biophysics, University of Tehran, PO Code 1417614335, Tehran, Iran
| | - Shahriar Pooyan
- Institute of Biochemistry and Biophysics, University of Tehran, PO Code 1417614335, Tehran, Iran.,Rooyan Darou Pharmaceutical Company, PO Code 15996-89111, Tehran, Iran
| |
Collapse
|
9
|
Geraldes DC, Beraldo-de-Araújo VL, Pardo BOP, Pessoa Junior A, Stephano MA, de Oliveira-Nascimento L. Protein drug delivery: current dosage form profile and formulation strategies. J Drug Target 2019; 28:339-355. [DOI: 10.1080/1061186x.2019.1669043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Danilo Costa Geraldes
- Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, SP, Brazil
- Biochemistry and Tissue Biology Department, Biology Institute, State University of Campinas, Campinas, SP, Brazil
| | - Viviane Lucia Beraldo-de-Araújo
- Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, SP, Brazil
- Biochemistry and Tissue Biology Department, Biology Institute, State University of Campinas, Campinas, SP, Brazil
| | | | | | | | - Laura de Oliveira-Nascimento
- Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, SP, Brazil
- Biochemistry and Tissue Biology Department, Biology Institute, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
10
|
Gulamhussein AA, Meah D, Soja DD, Fenner S, Saidani Z, Akram A, Lallie S, Mathews A, Painter C, Liddar MK, Mohammed Z, Chiu LK, Sumar SS, Healy H, Hussain N, Patel JH, Hall SC, Dafforn TR, Rothnie AJ. Examining the stability of membrane proteins within SMALPs. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Wang T, Markham A, Thomas SJ, Wang N, Huang L, Clemens M, Rajagopalan N. Solution Stability of Poloxamer 188 Under Stress Conditions. J Pharm Sci 2019; 108:1264-1271. [DOI: 10.1016/j.xphs.2018.10.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/03/2018] [Accepted: 10/22/2018] [Indexed: 12/01/2022]
|
12
|
Pal D, Tripathy RK, Teja MS, Kumar M, Banerjee UC, Pande AH. Antibiotic-free expression system for the production of human interferon-beta protein. 3 Biotech 2018; 8:36. [PMID: 29291149 PMCID: PMC5745201 DOI: 10.1007/s13205-017-1056-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/17/2017] [Indexed: 10/18/2022] Open
Abstract
Recombinant human interferon-β (rhIFN-β), a therapeutic protein, is produced using both prokaryotic and eukaryotic expression systems. However, instability of recombinant plasmid during cultivation of Escherichia coli results in low yield of the recombinant proteins. In addition, use of antibiotics during the cultivation imposes a major concern. In this study, we have compared the expression yield of rhIFN-β in E. coli BL21 (DE3) and E coli SE1 cells. Gene-encoding rhIFN-β was expressed in E. coli BL21 (DE3) and SE1 cells and the cultivation of recombinant E. coli cells was done in a laboratory scale bioreactor. Our results suggest that, compared to BL21(DE3) cells, the SE1 cells expressing rhIFN-β protein can be cultivated in the medium without antibiotic and provide increased stability of recombinant plasmid and higher expression yield of rhIFN-β protein. This system can be used for the production of rhIFN-β proteins for biomedical applications.
Collapse
Affiliation(s)
- Dharam Pal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Rajan K. Tripathy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Madaka Surya Teja
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Mukesh Kumar
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Uttam Chand Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Abhay H. Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| |
Collapse
|
13
|
Abdolvahab MH, Fazeli A, Radmalekshahi M, Nejadnik MR, Fazeli MR, Schellekens H. An Albumin-Free Formulation for Escherichia coli-Derived Interferon Beta-1b with Decreased Immunogenicity in Immune Tolerant Mice. J Interferon Cytokine Res 2016; 36:192-203. [DOI: 10.1089/jir.2015.0110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mohadeseh Haji Abdolvahab
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
- Biotechnology Group, Department of Science, Alzahra University, Tehran, Iran
| | - Ahmad Fazeli
- Department of Research & Development, Zistdaru Danesh Company, Tehran, Iran
| | - Mazda Radmalekshahi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - M. Reza Nejadnik
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Mohammad Reza Fazeli
- Department of Drug & Food Control, Faculty of Pharmacy and Pharmaceutical Quality Assurance Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Huub Schellekens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
14
|
Abdolvahab MH, Fazeli A, Halim A, Sediq AS, Fazeli MR, Schellekens H. Immunogenicity of Recombinant Human Interferon Beta-1b in Immune-Tolerant Transgenic Mice Corresponds with the Biophysical Characteristics of Aggregates. J Interferon Cytokine Res 2016; 36:247-57. [PMID: 26835734 DOI: 10.1089/jir.2015.0108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Determining to what extent biophysical characteristics of aggregates affect immunogenicity of therapeutic interferon beta-1b. Three recombinant human interferon beta-1b (rhIFNβ-1b) samples with different levels of aggregates generated by copper oxidation, thermal stress, or left untreated, as well as Avonex(®) drug substance and Betaferon(®) drug product, were injected intraperitoneally in nontransgenic and interferon beta transgenic FVB/N mice 5 times per week for 3 weeks. Antibodies against interferon beta were measured using enzyme-linked immunosorbent assay. UV and fluorescence spectroscopy, dynamic light scattering, size exclusion chromatography, reversed-phase high-performance liquid chromatography (RP-HPLC), fluid imaging microscopy, and resonant mass measurement, as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting, were used to characterize and quantitate aggregates in the 3 rhIFNβ preparations, to correlate biophysical characteristics with immunogenicity. In immune-tolerant interferon beta transgenic FVB/N mice, Betaferon drug product showed the highest immunogenicity, while Avonex drug substance showed the lowest level of immunogenicity. Of the 3 forms of rhIFNβ-1b, copper-oxidized rhIFNβ-1b showed lower immunogenicity than thermally stressed rhIFNβ-1b, despite containing larger aggregates. Both copper-oxidized rhIFNβ-1b and thermally stressed rhIFNβ-1b exhibited changes in protein structure as shown using fluorescence spectroscopy and RP-HPLC. Nontransgenic, nonimmune-tolerant FVB/N mice generated high antibody titers against all interferon beta samples tested. The level of immunogenicity and the breaking of tolerance in FVB/N transgenic mice are not only related to the level of aggregation but also depend on the size and structure of the aggregates.
Collapse
Affiliation(s)
- Mohadeseh Haji Abdolvahab
- 1 Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University , Utrecht, The Netherlands
| | - Ahmad Fazeli
- 2 Department of Research and Development, Zistdaru Danesh Co. Ltd. , Tehran, Iran
| | - Andhyk Halim
- 1 Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University , Utrecht, The Netherlands
| | - Ahmad S Sediq
- 3 Division of Drug Delivery Technology, Gorlaeus Laboratories, Leiden Centre for Drug Research (LACDR), Leiden University , Leiden, The Netherlands
| | - Mohammad Reza Fazeli
- 4 Department of Drug and Food Control, Faculty of Pharmacy and Pharmaceutical Quality Assurance Research Centre, Tehran University of Medical Sciences , Tehran, Iran
| | - Huub Schellekens
- 1 Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University , Utrecht, The Netherlands
| |
Collapse
|
15
|
Mahjoubi N, Fazeli MR, Dinarvand R, Khoshayand MR, Fazeli A, Taghavian M, Rastegar H. Preventing Aggregation of Recombinant Interferon beta-1b in Solution by Additives: Approach to an Albumin-Free Formulation. Adv Pharm Bull 2015; 5:497-505. [PMID: 26819922 DOI: 10.15171/apb.2015.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 07/04/2015] [Accepted: 07/30/2015] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Aggregation suppressing additives have been used to stabilize proteins during manufacturing and storage. Interferonβ-1b is prone to aggregation because of being non-glycosylated. Aggregation behavior of albumin-free formulations of recombinant IFNβ-1b was explored using additives such as n-dodecyl-β-D-maltoside, Tween 20, arginine, glycine, trehalose and sucrose at different pH. METHODS Fractional factorial design was applied to select major factors affecting aggregation in solutions. Box-Behnken technique was used to optimize the best concentration of additives and protein. RESULTS Quadratic model was the best fitted model for particle size, OD350 and OD280/OD260. The optimal conditions of 0.2% n-Dodecyl-β-D-maltoside, 70 mM arginine, 189 mM trehalose and protein concentration of 0.50 mg/ml at pH 4 were achieved. A potency value of 91% ± 5% was obtained for the optimized formulation. CONCLUSION This study shows that the combination of n-Dodecyl-β-D-maltoside, arginine and trehalose would demonstrate a significant stabilizing and anti-aggregating effect on the liquid formulation of interferonβ-1b. It can not only reduce the manufacturing costs but will also ease patient compliance.
Collapse
Affiliation(s)
- Najmeh Mahjoubi
- Department of Drug and Food Control, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Fazeli
- Department of Drug and Food Control, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khoshayand
- Department of Drug and Food Control, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Fazeli
- Research and Development Department, Zistdaru Danesh Company. Tehran, Iran
| | - Mohammad Taghavian
- Department of Drug and Food Control, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rastegar
- Food and Drug Research Center, Food and Drug Organization, MOH&ME, Tehran, Iran
| |
Collapse
|