1
|
Cao X, Xiang J, Zhang Q, Liu J, Zhou D, Xu Y, Xu P, Chen B, Bai H. Multidimensional role of adapalene in regulating cell death in multiple myeloma. Front Pharmacol 2024; 15:1415224. [PMID: 39175546 PMCID: PMC11338798 DOI: 10.3389/fphar.2024.1415224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024] Open
Abstract
Aims Multiple myeloma (MM) remains a challenging condition to cure, with persistent drug resistance negating the benefits of treatment advancements. The unraveling complexities in programmed cell death (PCD), inclusive of apoptosis, autophagy, and ferroptosis, have highlighted novel therapeutic avenues. Our study focuses on deciphering how adapalene (ADA), a small molecule compound, accelerates the demise of MM cells via targeting their compensatory survival mechanisms. Methods To assess the impact of ADA on MM, we employed flow cytometry and trypan blue exclusion assays to determine cell viabilities across MM cell lines and primary patient samples post-treatment. To delineate ADA's therapeutic targets and mechanisms, we conducted RNA sequencing (RNA-seq), gene set enrichment analysis (GSEA), molecular docking, and molecular dynamics simulations. We further designed pre-clinical trials emphasizing MM, exploring the efficacy of ADA as a standalone and in combination with bortezomib (BTZ). Results ADA elicited a dose-responsive induction of MM cell death. Building upon ADA's anti-MM capabilities as a single agent, we proposed that ADA-BTZ co-treatment might amplify this lethality. Indeed, ADA and BTZ together greatly potentiated MM cell death. ADA proved beneficial in restoring BTZ susceptibility in BTZ-resistant relapsed or refractory MM (RRMM) patient cells. Molecular simulations highlighted ADA's high affinity (-9.17 kcal/mol) for CD138, with MM-GBSA revealing a binding free energy of -27.39 kcal/mol. Detailed interaction analyses indicated hydrogen-bonding of ADA with CD138 at the Asp35 and Gln34 residues. Additionally, ADA emerged as a versatile instigator of both ferroptosis and apoptosis in MM cells. Furthermore, ADA disrupted activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway triggered by BTZ, fostering cell death in BTZ-resistant MM subsets. Conclusion ADA demonstrates a comprehensive capability to orchestrate MM cell death, exerting pronounced anti-MM activity while disrupting NF-κB-related drug resistance. ADA sensitization of MM cells to BTZ unravels its potential as a novel therapeutic drug for MM management.
Collapse
Affiliation(s)
- Xinya Cao
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Xiang
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Qi Zhang
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinwen Liu
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongming Zhou
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Xu
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua Bai
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Huang L, Gao R, Nan L, Qi J, Yang S, Shao S, Xie J, Pan M, Qiu T, Zhang J. Anti-VEGFR2-Interferon α Promotes the Infiltration of CD8+ T Cells in Colorectal Cancer by Upregulating the Expression of CCL5. J Immunother 2024; 47:195-204. [PMID: 38654631 DOI: 10.1097/cji.0000000000000516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/04/2024] [Indexed: 04/26/2024]
Abstract
SUMMARY Immunocytokines are a promising immunotherapeutic approach in cancer therapy. Anti-VEGFR2-interferon α (IFNα) suppressed colorectal cancer (CRC) growth and enhanced CD8 + T-cell infiltration in the tumor microenvironment, exhibiting great clinical translational potential. However, the mechanism of how the anti-VEGFR2-IFNα recruits T cells has not been elucidated. Here, we demonstrated that anti-VEGFR2-IFNα suppressed CRC metastasis and enhanced CD8 + T-cell infiltration. RNA sequencing revealed a transcriptional activation of CCL5 in metastatic CRC cells, which was correlated with T-cell infiltration. IFNα but not anti-VEGFR2 could further upregulate CCL5 in tumors. In immunocompetent mice, both IFNα and anti-VEGFR2-IFNα increased the subset of tumor-infiltrating CD8 + T cells through upregulation of CCL5. Knocking down CCL5 in tumor cells attenuated the infiltration of CD8 + T cells and dampened the antitumor efficacy of anti-VEGFR2-IFNα treatment. We, therefore, propose upregulation of CCL5 is a key to enhance infiltration of CD8 + T cells in metastatic CRC with IFNα and IFNα-based immunocytokine treatments. These findings may help the development of IFNα related immune cytokines for the treatment of less infiltrated tumors.
Collapse
Affiliation(s)
- Linhua Huang
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Rui Gao
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Lidi Nan
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Jingyao Qi
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Siyu Yang
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuai Shao
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Jiajun Xie
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Mingzhu Pan
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | | | - Juan Zhang
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
3
|
Riccardi F, Tangredi C, Dal Bo M, Toffoli G. Targeted therapy for multiple myeloma: an overview on CD138-based strategies. Front Oncol 2024; 14:1370854. [PMID: 38655136 PMCID: PMC11035824 DOI: 10.3389/fonc.2024.1370854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Multiple myeloma (MM) is an incurable hematological disease characterized by the uncontrolled growth of plasma cells primarily in the bone marrow. Although its treatment consists of the administration of combined therapy regimens mainly based on immunomodulators and proteosome inhibitors, MM remains incurable, and most patients suffer from relapsed/refractory disease with poor prognosis and survival. The robust results achieved by immunotherapy targeting MM-associated antigens CD38 and CD319 (also known as SLAMF7) have drawn attention to the development of new immune-based strategies and different innovative compounds in the treatment of MM, including new monoclonal antibodies, antibody-drug conjugates, recombinant proteins, synthetic peptides, and adaptive cellular therapies. In this context, Syndecan1 (CD138 or SDC1), a transmembrane heparan sulfate proteoglycan that is upregulated in malignant plasma cells, has gained increasing attention in the panorama of MM target antigens, since its key role in MM tumorigenesis, progression and aggressiveness has been largely reported. Here, our aim is to provide an overview of the most important aspects of MM disease and to investigate the molecular functions of CD138 in physiologic and malignant cell states. In addition, we will shed light on the CD138-based therapeutic approaches currently being tested in preclinical and/or clinical phases in MM and discuss their properties, mechanisms of action and clinical applications.
Collapse
Affiliation(s)
- Federico Riccardi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Carmela Tangredi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|
4
|
Ughade PA, Shrivastava D. Unveiling the Role of Endometrial CD-138: A Comprehensive Review on Its Significance in Infertility and Early Pregnancy. Cureus 2024; 16:e54782. [PMID: 38529432 PMCID: PMC10961243 DOI: 10.7759/cureus.54782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
This review comprehensively examines the role of endometrial CD-138 (syndecan-1) in the context of infertility and early pregnancy. The endometrium, a dynamic tissue responsive to hormonal cues, plays a central role in fertility, and understanding the molecular intricacies governing its function is crucial. CD-138, a cell surface proteoglycan, emerges as a critical player expressed by various endometrial cell types. Our exploration encompasses a brief overview of the endometrium, introducing CD-138 as a significant molecular entity. The rationale for the review underscores the importance of elucidating endometrial factors in fertility and addresses existing knowledge gaps related to CD-138. Throughout the review, we unravel the multifaceted nature of CD-138 and its involvement in infertility, highlighting its potential as a diagnostic marker. Furthermore, insights into CD-138's role during early pregnancy, including trophoblast-endothelial interactions, are discussed. In conclusion, the findings underscore the clinical implications of CD-138, suggesting its utility in diagnostics and offering prospects for targeted therapeutic interventions. The identified knowledge gaps propel future research directions, promising to deepen our understanding of this enigmatic molecule and its transformative potential in reproductive medicine.
Collapse
Affiliation(s)
- Prachi A Ughade
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Deepti Shrivastava
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
5
|
Lebel E, Nachmias B, Pick M, Gross Even-Zohar N, Gatt ME. Understanding the Bioactivity and Prognostic Implication of Commonly Used Surface Antigens in Multiple Myeloma. J Clin Med 2022; 11:jcm11071809. [PMID: 35407416 PMCID: PMC9000075 DOI: 10.3390/jcm11071809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) progression is dependent on its interaction with the bone marrow microenvironment and the immune system and is mediated by key surface antigens. Some antigens promote adhesion to the bone marrow matrix and stromal cells, while others are involved in intercellular interactions that result in differentiation of B-cells to plasma cells (PC). These interactions are also involved in malignant transformation of the normal PC to MM PC as well as disease progression. Here, we review selected surface antigens that are commonly used in the flow cytometry analysis of MM for identification of plasma cells (PC) and the discrimination between normal and malignant PC as well as prognostication. These include the markers: CD38, CD138, CD45, CD19, CD117, CD56, CD81, CD27, and CD28. Furthermore, we will discuss the novel marker CD24 and its involvement in MM. The bioactivity of each antigen is reviewed, as well as its expression on normal vs. malignant PC, prognostic implications, and therapeutic utility. Understanding the role of these specific surface antigens, as well as complex co-expressions of combinations of antigens, may allow for a more personalized prognostic monitoring and treatment of MM patients.
Collapse
|
6
|
Shang P, Gao R, Zhu Y, Zhang X, Wang Y, Guo M, Peng H, Wang M, Zhang J. VEGFR2-targeted antibody fused with IFN α mut regulates the tumor microenvironment of colorectal cancer and exhibits potent anti-tumor and anti-metastasis activity. Acta Pharm Sin B 2021; 11:420-433. [PMID: 33643821 PMCID: PMC7893194 DOI: 10.1016/j.apsb.2020.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
Although interferon α (IFNα) and anti-angiogenesis antibodies have shown appropriate clinical benefit in the treatment of malignant cancer, they are deficient in clinical applications. Previously, we described an anti-vascular endothelial growth factor receptor 2 (VEGFR2)-IFNα fusion protein named JZA01, which showed increased in vivo half-life and reduced side effects compared with IFNα, and it was more effective than the anti-VEGFR2 antibody against tumors. However, the affinity of the IFNα component of the fusion protein for its receptor-IFNAR1 was decreased. To address this problem, an IFNα-mutant fused with anti-VEGFR2 was designed to produce anti-VEGFR2-IFNαmut, which was used to target VEGFR2 with enhanced anti-tumor and anti-metastasis efficacy. Anti-VEGFR2-IFNαmut specifically inhibited proliferation of tumor cells and promoted apoptosis. In addition, anti-VEGFR2-IFNαmut inhibited migration of colorectal cancer cells and invasion by regulating the PI3K-AKT-GSK3β-snail signal pathway. Anti-VEGFR2-IFNαmut showed superior anti-tumor efficacy with improved tumor microenvironment (TME) by enhancing dendritic cell maturation, dendritic cell activity, and increasing tumor-infiltrating CD8+ T cells. Thus, this study provides a novel approach for the treatment of metastatic colorectal cancer, and this design may become a new approach to cancer immunotherapy.
Collapse
Affiliation(s)
- Pengzhao Shang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Rui Gao
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yijia Zhu
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaorui Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Wang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Minji Guo
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Peng
- Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Min Wang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Juan Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
7
|
Stringhini M, Mock J, Fontana V, Murer P, Neri D. Antibody-mediated delivery of LIGHT to the tumor boosts natural killer cells and delays tumor progression. MAbs 2021; 13:1868066. [PMID: 33404287 PMCID: PMC7808322 DOI: 10.1080/19420862.2020.1868066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/05/2022] Open
Abstract
LIGHT is a member of the tumor necrosis factor superfamily, which has been claimed to mediate anti-tumor activity on the basis of cancer cures observed in immunocompetent mice bearing transgenic LIGHT-expressing tumors. The preclinical development of a LIGHT-based therapeutic has been hindered by the lack of functional stability exhibited by this protein. Here, we describe the cloning, expression, and characterization of five antibody-LIGHT fusion proteins, directed against the alternatively spliced extra domain A of fibronectin, a conserved tumor-associated antigen. Among the five tested formats, only the sequential fusion of the F8 antibody in single-chain diabody format, followed by the LIGHT homotrimer expressed as a single polypeptide, yielded a protein (termed "F8-LIGHT") that was not prone to aggregation. A quantitative biodistribution analysis in tumor-bearing mice, using radio-iodinated protein preparations, confirmed that F8-LIGHT was able to preferentially accumulate at the tumor site, with a tumor-to-blood ratio of ca. five to one 24 hours after intravenous administration. Tumor therapy experiments, performed in two murine tumor models (CT26 and WEHI-164), featuring different levels of lymphocyte infiltration into the neoplastic mass, revealed that F8-LIGHT could significantly reduce tumor-cell growth and was more potent than a similar fusion protein (KSF-LIGHT), directed against hen egg lysozyme and serving as negative control of irrelevant specificity in the mouse. At a mechanistic level, the activity of F8-LIGHT was mainly due to an intratumoral expansion of natural killer cells, whereas there was no evidence of expansion of CD8 + T cells, neither in the tumor, nor in draining lymph nodes. Abbreviations: CTLA-4: Cytotoxic T-lymphocytes-associated protein 4; EGFR: Epidermal growth factor receptor; HVEM: Herpesvirus entry mediator; IFNγ: Interferon-gamma; LIGHT: Lymphotoxin, exhibits inducible expression and competes with HSV glycoprotein D for binding to herpesvirus entry mediator, a receptor expressed on T lymphocytes; LTβR: Lymphotoxin beta receptor; NF-κB: Nuclear factor "kappa-light-chain-enhancer" of activated B cells; NK: Natural killer cells; PD-1: Programmed cell death protein 1; PD-L1: Programmed death-ligand 1; TNF: Tumor necrosis factor.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/metabolism
- CHO Cells
- Cell Line, Tumor
- Cricetinae
- Cricetulus
- Disease Progression
- Humans
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Mice, Inbred BALB C
- Neoplasms/drug therapy
- Neoplasms/immunology
- Neoplasms/metabolism
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/pharmacokinetics
- Recombinant Fusion Proteins/pharmacology
- Tissue Distribution
- Tumor Burden/drug effects
- Tumor Burden/immunology
- Tumor Necrosis Factor Ligand Superfamily Member 14/genetics
- Tumor Necrosis Factor Ligand Superfamily Member 14/immunology
- Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
- Mice
Collapse
Affiliation(s)
- Marco Stringhini
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Jacqueline Mock
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Vanessa Fontana
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Patrizia Murer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| |
Collapse
|
8
|
Mortensen MR, Mock J, Bertolini M, Stringhini M, Catalano M, Neri D. Targeting an engineered cytokine with interleukin-2 and interleukin-15 activity to the neovasculature of solid tumors. Oncotarget 2020; 11:3972-3983. [PMID: 33216834 PMCID: PMC7646832 DOI: 10.18632/oncotarget.27772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/24/2020] [Indexed: 01/07/2023] Open
Abstract
There is a growing interest in the antibody-based delivery of cytokines to the tumor environment as a means to boost the anti-cancer activity of tumor-resident T cells and NK cells. Here, we describe the expression and characterization of fusion proteins, featuring the L19 antibody (specific to the alternatively-spliced EDB domain of fibronectin) and an engineered cytokine with interleukin-2 and interleukin-15 properties. The cytokine moiety was fused either at the N-terminal or at the C-terminal extremity and both fusion proteins showed a selective tumor accumulation in a quantitative biodistribution experiment. The N-terminal fusion inhibited tumor growth in immunocompetent mice bearing F9 carcinomas or WEHI-164 sarcomas when used as single agent. The anticancer activity was compared to the one of the same cytokine payload used as recombinant protein or fused to an anti-hen egg lysozyme antibody, serving as negative control of irrelevant specificity in the mouse. These results indicate that the antibody-based delivery of engineered cytokines to the tumor neovasculature may mediate a potent anticancer activity.
Collapse
Affiliation(s)
- Michael R Mortensen
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Jacqueline Mock
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Marco Bertolini
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Marco Stringhini
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Marco Catalano
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| |
Collapse
|
9
|
Bruins WSC, Zweegman S, Mutis T, van de Donk NWCJ. Targeted Therapy With Immunoconjugates for Multiple Myeloma. Front Immunol 2020; 11:1155. [PMID: 32636838 PMCID: PMC7316960 DOI: 10.3389/fimmu.2020.01155] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
The introduction of proteasome inhibitors (PI) and immunomodulatory drugs (IMiD) has markedly increased the survival of multiple myeloma (MM) patients. Also, the unconjugated monoclonal antibodies (mAb) daratumumab (anti-CD38) and elotuzumab (anti-SLAMF7) have revolutionized MM treatment given their clinical efficacy and safety, illustrating the potential of targeted immunotherapy as a powerful treatment strategy for MM. Nonetheless, most patients eventually develop PI-, IMiD-, and mAb-refractory disease because of the selection of resistant MM clones, which associates with a poor prognosis. Accordingly, these patients remain in urgent need of new therapies with novel mechanisms of action. In this respect, mAbs or mAb fragments can also be utilized as carriers of potent effector moieties to specifically target surface antigens on cells of interest. Such immunoconjugates have the potential to exert anti-MM activity in heavily pretreated patients due to their distinct and pleiotropic mechanisms of action. In addition, the fusion of highly cytotoxic compounds to mAbs decreases the off-target toxicity, thereby improving the therapeutic window. According to the effector moiety, immunoconjugates are classified into antibody-drug conjugates, immunotoxins, immunocytokines, or radioimmunoconjugates. This review will focus on the mechanisms of action, safety and efficacy of several promising immunoconjugates that are under investigation in preclinical and/or clinical MM studies. We will also include a discussion on combination therapy with immunoconjugates, resistance mechanisms, and future developments.
Collapse
Affiliation(s)
- Wassilis S C Bruins
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sonja Zweegman
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tuna Mutis
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Niels W C J van de Donk
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Paving the Way toward Successful Multiple Myeloma Treatment: Chimeric Antigen Receptor T-Cell Therapy. Cells 2020; 9:cells9040983. [PMID: 32316105 PMCID: PMC7226998 DOI: 10.3390/cells9040983] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the significant progress of modern anticancer therapies, multiple myeloma (MM) is still incurable for the majority of patients. Following almost three decades of development, chimeric antigen receptor (CAR) T-cell therapy now has the opportunity to revolutionize the treatment landscape and meet the unmet clinical need. However, there are still several major hurdles to overcome. Here we discuss the recent advances of CAR T-cell therapy for MM with an emphasis on future directions and possible risks. Currently, CAR T-cell therapy for MM is at the first stage of clinical studies, and most studies have focused on CAR T cells targeting B cell maturation antigen (BCMA), but other antigens such as cluster of differentiation 138 (CD138, syndecan-1) are also being evaluated. Although this therapy is associated with side effects, such as cytokine release syndrome and neurotoxicity, and relapses have been observed, the benefit–risk balance and huge potential drive the ongoing clinical progress. To fulfill the promise of recent clinical trial success and maximize the potential of CAR T, future efforts should focus on the reduction of side effects, novel targeted antigens, combinatorial uses of different types of CAR T, and development of CAR T cells targeting more than one antigen.
Collapse
|
11
|
Huang H, Wu HW, Hu YX. Current advances in chimeric antigen receptor T-cell therapy for refractory/relapsed multiple myeloma. J Zhejiang Univ Sci B 2020; 21:29-41. [PMID: 31898440 PMCID: PMC6964993 DOI: 10.1631/jzus.b1900351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/30/2019] [Indexed: 01/07/2023]
Abstract
Multiple myeloma (MM), considered an incurable hematological malignancy, is characterized by its clonal evolution of malignant plasma cells. Although the application of autologous stem cell transplantation (ASCT) and the introduction of novel agents such as immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs) have doubled the median overall survival to eight years, relapsed and refractory diseases are still frequent events in the course of MM. To achieve a durable and deep remission, immunotherapy modalities have been developed for relapsed/refractory multiple myeloma (RRMM). Among these approaches, chimeric antigen receptor (CAR) T-cell therapy is the most promising star, based on the results of previous success in B-cell neoplasms. In this immunotherapy, autologous T cells are engineered to express an artificial receptor which targets a tumor-associated antigen and initiates the T-cell killing procedure. Tisagenlecleucel and Axicabtagene, targeting the CD19 antigen, are the two pacesetters of CAR T-cell products. They were approved by the US Food and Drug Administration (FDA) in 2017 for the treatment of acute lymphocytic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL). Their development enabled unparalleled efficacy in combating hematopoietic neoplasms. In this review article, we summarize six promising candidate antigens in MM that can be targeted by CARs and discuss some noteworthy studies of the safety profile of current CAR T-cell therapy.
Collapse
Affiliation(s)
- He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Heng-wei Wu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Yong-xian Hu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Young PA, Yamada RE, Trinh KR, Vasuthasawat A, De Oliveira S, Yamada DH, Morrison SL, Timmerman JM. Activity of Anti-CD19 Chimeric Antigen Receptor T Cells Against B Cell Lymphoma Is Enhanced by Antibody-Targeted Interferon-Alpha. J Interferon Cytokine Res 2019; 38:239-254. [PMID: 29920129 DOI: 10.1089/jir.2018.0030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An important emerging form of immunotherapy targeting B cell malignancies is chimeric antigen receptor (CAR) T cell therapy. Despite encouraging response rates of anti-CD19 CAR T cell therapy in B cell lymphomas, limited durability of response necessitates further study to potentiate CAR T cell efficacy. Antibody-targeted interferon (IFN) therapy is a novel approach in immunotherapy. Given the ability of IFNs to promote T cell activation and survival, target cell recognition, and cytotoxicity, we asked whether antibody-targeted IFN could enhance the antitumor effects of anti-CD19 CAR T cells. We produced an anti-CD20-IFN fusion protein containing the potent type 1 IFN isoform alpha14 (α14), and demonstrated its ability to suppress proliferation and induce apoptosis of human B cell lymphomas. Indeed, with the combination of anti-CD20-hIFNα14 and CAR T cells, we found enhanced cell killing among B cell lymphoma lines. Importantly, for all cell lines pretreated with anti-CD20-hIFNα14, the subsequent cytokine production by CAR T cells was markedly increased regardless of the degree of cell killing. Thus, several activities of CD19 CAR T cells were enhanced in the presence of anti-CD20-hIFNα14. These data suggest that antibody-targeted IFN may be an important novel approach to improving the efficacy of CAR T cell therapy.
Collapse
Affiliation(s)
- Patricia A Young
- 1 Division of Hematology & Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Reiko E Yamada
- 1 Division of Hematology & Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Kham R Trinh
- 2 Department of Microbiology, Immunology, and Molecular Genetics, University of California , Los Angeles, Los Angeles, California
| | - Alex Vasuthasawat
- 2 Department of Microbiology, Immunology, and Molecular Genetics, University of California , Los Angeles, Los Angeles, California
| | - Satiro De Oliveira
- 3 Division of Pediatric Hematology & Oncology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, California
| | - Douglas H Yamada
- 2 Department of Microbiology, Immunology, and Molecular Genetics, University of California , Los Angeles, Los Angeles, California
| | - Sherie L Morrison
- 2 Department of Microbiology, Immunology, and Molecular Genetics, University of California , Los Angeles, Los Angeles, California
| | - John M Timmerman
- 1 Division of Hematology & Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
13
|
Akhmetzyanova I, McCarron MJ, Parekh S, Chesi M, Bergsagel PL, Fooksman DR. Dynamic CD138 surface expression regulates switch between myeloma growth and dissemination. Leukemia 2019; 34:245-256. [PMID: 31439945 DOI: 10.1038/s41375-019-0519-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/02/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022]
Abstract
The canonical plasma cell marker CD138 (syndecan-1) is highly expressed on the myeloma cell surface, but its functional role in vivo is unclear, as well as the ontogeny of CD138-high and CD138-negative (neg) myeloma cells. In this study we used an in vivo murine Vk*MYC myeloma model where CD138 is heterogeneously expressed depending on tumor size. We find that in comparison to CD138-neg myeloma cells, the CD138-high subset of myeloma cells is highly proliferative, less apoptotic, and enhanced IL-6R signaling, which is known to promote survival. In addition CD138-high myeloma engrafts better than its CD138-neg counterpart. In contrast, CD138-neg cells are more motile both in vitro and in vivo, and more readily disseminate and spread to other bones in vivo than CD138-high subset. Neutralizing CD138 rapidly triggers migration of myeloma cells in vivo and leads to intravasation, which results in increased dissemination to other bones. Both murine and human myeloma cells can rapidly recycle CD138 surface expression through endocytic trafficking, in response to serum levels. Blocking CD138 enhances myeloma sensitivity to bortezomib chemotherapy and significantly reduces tumor size compared to bortezomib treatment alone. Thus, our data show that CD138 surface expression dynamically regulates a switch between growth vs. dissemination for myeloma, in response to nutrient conditions.
Collapse
Affiliation(s)
| | - Mark J McCarron
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Samir Parekh
- Department of Hematology-Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marta Chesi
- Department of Medicine, Mayo Clinic, Phoenix, AZ, USA
| | | | - David R Fooksman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
14
|
Ziffels B, Stringhini M, Probst P, Fugmann T, Sturm T, Neri D. Antibody-Based Delivery of Cytokine Payloads to Carbonic Anhydrase IX Leads to Cancer Cures in Immunocompetent Tumor-Bearing Mice. Mol Cancer Ther 2019; 18:1544-1554. [PMID: 31213507 DOI: 10.1158/1535-7163.mct-18-1301] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/19/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
Antibody-cytokine fusion proteins can have the potential to increase the density and activity of subsets of leukocytes within the tumor mass. Here, we describe the design, production, and characterization of four novel antibody-cytokine fusion proteins directed against human carbonic anhydrase IX, a highly validated marker of hypoxia that is overexpressed in clear cell renal cell carcinoma and other malignancies. As immunomodulatory payloads we used TNF, IL2, IFNα2 (corresponding to products that are in clinical use), and IL12 (as this cytokine potently activates T cells and NK cells). Therapy experiments were performed in BALB/c mice, bearing CT26 tumors transfected with human carbonic anhydrase IX, in order to assess the performance of the fusion proteins in an immunocompetent setting. The biopharmaceuticals featuring TNF, IL2, or IL12 as payloads cured all mice in their therapy groups, whereas only a subset of mice was cured by the antibody-based delivery of IFNα2. Although the antibody fusion with TNF mediated a rapid hemorrhagic necrosis of the tumor mass, a slower regression of the neoplastic lesions (which continued after the last injection) was observed with the other fusion proteins, and treated mice acquired protective anticancer immunity. A high proportion of tumor-infiltrating CD8+ T cells was specific to the retroviral antigen AH1; however, the LGPGREYRAL peptide derived from human carbonic anhydrase IX was also present on tumor cells. The results described herein provide a rationale for the clinical use of fully human antibody-cytokine fusions specific to carbonic anhydrase IX.
Collapse
Affiliation(s)
- Barbara Ziffels
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute of Pharmaceutical Sciences (IPW), ETH Zurich, Zurich, Switzerland
| | - Marco Stringhini
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute of Pharmaceutical Sciences (IPW), ETH Zurich, Zurich, Switzerland
| | - Philipp Probst
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute of Pharmaceutical Sciences (IPW), ETH Zurich, Zurich, Switzerland
| | | | | | - Dario Neri
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute of Pharmaceutical Sciences (IPW), ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Padayachee ER, Biteghe FAN, Malindi Z, Bauerschlag D, Barth S. Human Antibody Fusion Proteins/Antibody Drug Conjugates in Breast and Ovarian Cancer. Transfus Med Hemother 2017; 44:303-310. [PMID: 29070975 DOI: 10.1159/000479979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/01/2017] [Indexed: 12/19/2022] Open
Abstract
Considerable research efforts have been dedicated to understanding ovarian and breast cancer mechanisms, but there has been little progress translating the research into effective clinical applications. Hence, personalized/precision medicine has emerged because of its potential to improve the accuracy of tumor targeting and minimize toxicity to normal tissue. Targeted therapy in both breast and ovarian cancer has focused on antibodies, antibody drug conjugates (ADCs), and very recently the introduction of human antibody fusion proteins. Small molecule inhibitors and monoclonal antibodies (mAbs) are used in conjunction with chemotherapeutic drugs as a form of treatment but problems arise from a board expression of the target antigen in healthy tissues. Also, insufficient tumor penetration due to tight binding affinity and macromolecular size of mAbs compromise the efficacy of these ADCs. A more targeted approach is thus needed, and ADCs were designed to meet this need. However, in ADCs the method of conjugation of drug to antibody is >1, altering the structure of the drug which leads to off-target effects. Random conjugation also causes the drug to affect the pharmokinetics and biodistribution of the antibody and may cause nonspecific binding and internalization. Recombinant therapeutic proteins achieve controlled conjugation reactions and combine cytotoxicity and targeting in one molecule. They can also be engineered to extend half-life, stability and mechanism of action, and offer novel delivery routes. SNAP-tag fusion proteins are an example of a theranostic recombinant protein as they provide a unique antibody format to conjugate a variety of benzyl guanine modified labels, e.g. fluorophores and photosensitizers in a 1:1 stoichiometry. On the one hand, SNAP tag fusions can be used to optically image tumors when conjugated to a fluorophore, and on the other hand the recombinant proteins can induce necrosis/apoptosis in the tumor when conjugated to a photosensitizer upon exposure to a changeable wavelength of light. The dual nature of SNAP-tag fusions as both a diagnostic and therapeutic tool reinforces its significant role in cancer treatment in an era of precision medicine.
Collapse
Affiliation(s)
- Eden R Padayachee
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Fleury Augustin Nsole Biteghe
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Zaria Malindi
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dirk Bauerschlag
- Department of Gynecological Oncology, University Medical Center Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
| | - Stefan Barth
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
Zhang L, Tai YT, Ho MZG, Qiu L, Anderson KC. Interferon-alpha-based immunotherapies in the treatment of B cell-derived hematologic neoplasms in today's treat-to-target era. Exp Hematol Oncol 2017; 6:20. [PMID: 28725493 PMCID: PMC5512936 DOI: 10.1186/s40164-017-0081-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/05/2017] [Indexed: 02/05/2023] Open
Abstract
B cell lymphoma and multiple myeloma (MM) are the most common hematological malignancies which benefit from therapeutic monoclonal antibodies (mAbs)-based immunotherapies. Despite significant improvement on patient outcome following the use of novel therapies for the past decades, curative treatment is unavailable for the majority of patients. For example, the 5-year survival of MM is currently less than 50%. In the 1980s, interferon-α was used as monotherapy in newly diagnosed or previously treated MM with an overall response rate of 15-20%. Noticeably, a small subset of patients who responded to long-term interferon-α further achieved sustained complete remission. Since 1990, interferon-α-containing regimens have been used as a central maintenance strategy for patients with MM. However, the systemic administration of interferon-α was ultimately limited by its pronounced toxicity. To address this, the selective mAb-mediated delivery of interferon-α has been developed to enhance specific killing of MM and B-cell malignant cells. As such, targeted interferon-α therapy may improve therapeutic window and sustain responses, while further overcoming suppressive microenvironment. This review aims to reinforce the role of interferon-α by consolidating our current understanding of targeting interferon-α with tumor-specific mAbs for B cell lymphoma and myeloma.
Collapse
Affiliation(s)
- Li Zhang
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA USA
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yu-Tzu Tai
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA USA
| | - Matthew Zhi Guang Ho
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA USA
- UCD School of Medicine, College of Health and Agricultural Science, Belfield, Dublin Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, UCD, Belfield, Dublin Ireland
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Kenneth C. Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA USA
| |
Collapse
|
17
|
Li Z, Zhu Y, Li C, Trinh R, Ren X, Sun F, Wang Y, Shang P, Wang T, Wang M, Morrison SL, Zhang J. Anti-VEGFR2-interferon-α2 regulates the tumor microenvironment and exhibits potent antitumor efficacy against colorectal cancer. Oncoimmunology 2017; 6:e1290038. [PMID: 28405526 DOI: 10.1080/2162402x.2017.1290038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 12/11/2022] Open
Abstract
Interferon-α (IFNα) has multiple antitumor effects including direct antitumor toxicity and the ability to potently stimulate both innate and adaptive immunity. However, its clinical applications in the treatment of malignancies have been limited because of short half-life and serious adverse reactions when attempting to deliver therapeutically effective doses. To address these issues, we fused IFNα2a to the anti-vascular endothelial growth factor and receptor 2 (VEGFR2) antibody JZA00 with the goal of targeting it to the tumor microenvironment where it can stimulate the antitumor immune response. The fusion protein, JZA01, is effective against colorectal cancer by inhibiting angiogenesis, exhibiting direct cytotoxicity, and activating the antitumor immune response. Although JZA01 exhibited reduced IFNα2 activity in vitro compared with native IFNα2, VEGFR2 targeting permitted efficient antiproliferative, proapoptotic, antiangiogenesis, and immune-stimulating effects against the colorectal tumors HCT-116 and SW620. JZA01 showed in vivo efficacy in NOD-SCID mice-bearing established HCT-116 tumors. In conclusion, this study describes an antitumor immunotherapy that is highly promising for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Zhaoting Li
- Antibody Engineering Laboratory, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Yijia Zhu
- Antibody Engineering Laboratory, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Chenchen Li
- Antibody Engineering Laboratory, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Ryan Trinh
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles , Los Angeles, CA, USA
| | - Xueyan Ren
- Antibody Engineering Laboratory, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Fumou Sun
- Antibody Engineering Laboratory, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Youfu Wang
- Antibody Engineering Laboratory, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Pengzhao Shang
- Antibody Engineering Laboratory, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Tong Wang
- Antibody Engineering Laboratory, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Min Wang
- Antibody Engineering Laboratory, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Sherie L Morrison
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles , Los Angeles, CA, USA
| | - Juan Zhang
- Antibody Engineering Laboratory, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| |
Collapse
|
18
|
Pogue SL, Taura T, Bi M, Yun Y, Sho A, Mikesell G, Behrens C, Sokolovsky M, Hallak H, Rosenstock M, Sanchez E, Chen H, Berenson J, Doyle A, Nock S, Wilson DS. Targeting Attenuated Interferon-α to Myeloma Cells with a CD38 Antibody Induces Potent Tumor Regression with Reduced Off-Target Activity. PLoS One 2016; 11:e0162472. [PMID: 27611189 PMCID: PMC5017640 DOI: 10.1371/journal.pone.0162472] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/23/2016] [Indexed: 11/18/2022] Open
Abstract
Interferon-α (IFNα) has been prescribed to effectively treat multiple myeloma (MM) and other malignancies for decades. Its use has waned in recent years, however, due to significant toxicity and a narrow therapeutic index (TI). We sought to improve IFNα's TI by, first, attaching it to an anti-CD38 antibody, thereby directly targeting it to MM cells, and, second, by introducing an attenuating mutation into the IFNα portion of the fusion protein rendering it relatively inactive on normal, CD38 negative cells. This anti-CD38-IFNα(attenuated) immunocytokine, or CD38-Attenukine™, exhibits 10,000-fold increased specificity for CD38 positive cells in vitro compared to native IFNα and, significantly, is ~6,000-fold less toxic to normal bone marrow cells in vitro than native IFNα. Moreover, the attenuating mutation significantly decreases IFNα biomarker activity in cynomolgus macaques indicating that this approach may yield a better safety profile in humans than native IFNα or a non-attenuated IFNα immunocytokine. In human xenograft MM tumor models, anti-CD38-IFNα(attenuated) exerts potent anti-tumor activity in mice, inducing complete tumor regression in most cases. Furthermore, anti-CD38-IFNα(attenuated) is more efficacious than standard MM treatments (lenalidomide, bortezomib, dexamethasone) and exhibits strong synergy with lenalidomide and with bortezomib in xenograft models. Our findings suggest that tumor-targeted attenuated cytokines such as IFNα can promote robust tumor killing while minimizing systemic toxicity.
Collapse
Affiliation(s)
- Sarah L. Pogue
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
- * E-mail:
| | - Tetsuya Taura
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| | - Mingying Bi
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| | - Yong Yun
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| | - Angela Sho
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| | - Glen Mikesell
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| | - Collette Behrens
- Teva Pharmaceuticals, Global Branded Biologics Division, Sydney, Australia
| | - Maya Sokolovsky
- Teva Pharmaceuticals, Global Branded Biologics Division, Netanya, Israel
| | - Hussein Hallak
- Teva Pharmaceuticals, Global Branded Biologics Division, Netanya, Israel
| | - Moti Rosenstock
- Teva Pharmaceuticals, Global Branded Biologics Division, Netanya, Israel
| | - Eric Sanchez
- The Institute for Myeloma and Bone Cancer Research, West Hollywood, California, United States of America
| | - Haiming Chen
- The Institute for Myeloma and Bone Cancer Research, West Hollywood, California, United States of America
| | - James Berenson
- The Institute for Myeloma and Bone Cancer Research, West Hollywood, California, United States of America
| | - Anthony Doyle
- Teva Pharmaceuticals, Global Branded Biologics Division, Sydney, Australia
| | - Steffen Nock
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| | - David S. Wilson
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| |
Collapse
|
19
|
Shi Y, Daniels-Wells TR, Frost P, Lee J, Finn RS, Bardeleben C, Penichet ML, Jung ME, Gera J, Lichtenstein A. Cytotoxic Properties of a DEPTOR-mTOR Inhibitor in Multiple Myeloma Cells. Cancer Res 2016; 76:5822-5831. [PMID: 27530328 DOI: 10.1158/0008-5472.can-16-1019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/15/2016] [Indexed: 11/16/2022]
Abstract
DEPTOR is a 48 kDa protein that binds to mTOR and inhibits this kinase in TORC1 and TORC2 complexes. Overexpression of DEPTOR specifically occurs in a model of multiple myeloma. Its silencing in multiple myeloma cells is sufficient to induce cytotoxicity, suggesting that DEPTOR is a potential therapeutic target. mTORC1 paralysis protects multiple myeloma cells against DEPTOR silencing, implicating mTORC1 in the critical role of DEPTOR in multiple myeloma cell viability. Building on this foundation, we interrogated a small-molecule library for compounds that prevent DEPTOR binding to mTOR in a yeast-two-hybrid assay. One compound was identified that also prevented DEPTOR-mTOR binding in human myeloma cells, with subsequent activation of mTORC1 and mTORC2. In a surface plasmon resonance (SPR) assay, the compound bound to recombinant DEPTOR but not to mTOR. The drug also prevented binding of recombinant DEPTOR to mTOR in the SPR assay. Remarkably, although activating TORC1 and TORC2, the compound induced apoptosis and cell-cycle arrest in multiple myeloma cell lines and prevented outgrowth of human multiple myeloma cells in immunodeficient mice. In vitro cytotoxicity against multiple myeloma cell lines was directly correlated with DEPTOR protein expression and was mediated, in part, by the activation of TORC1 and induction of p21 expression. Additional cytotoxicity was seen against primary multiple myeloma cells, whereas normal hematopoietic colony formation was unaffected. These results further support DEPTOR as a viable therapeutic target in multiple myeloma and suggest an effective strategy of preventing binding of DEPTOR to mTOR. Cancer Res; 76(19); 5822-31. ©2016 AACR.
Collapse
Affiliation(s)
- Yijiang Shi
- Department of Hematology-Oncology, University of California at Los Angeles, Los Angeles, California
| | - Tracy R Daniels-Wells
- Department of Surgery, University of California at Los Angeles, Los Angeles, California
| | - Patrick Frost
- Department of Hematology-Oncology, University of California at Los Angeles, Los Angeles, California
| | - Jihye Lee
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California
| | - Richard S Finn
- Department of Hematology-Oncology, University of California at Los Angeles, Los Angeles, California
| | - Carolyne Bardeleben
- Department of Hematology-Oncology, University of California at Los Angeles, Los Angeles, California
| | - Manuel L Penichet
- Department of Surgery, University of California at Los Angeles, Los Angeles, California. Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California
| | - Michael E Jung
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California
| | - Joseph Gera
- Department of Hematology-Oncology, University of California at Los Angeles, Los Angeles, California
| | - Alan Lichtenstein
- Department of Hematology-Oncology, University of California at Los Angeles, Los Angeles, California.
| |
Collapse
|
20
|
Vasuthasawat A, Yoo EM, Trinh KR, Lichtenstein A, Timmerman JM, Morrison SL. Targeted immunotherapy using anti-CD138-interferon α fusion proteins and bortezomib results in synergistic protection against multiple myeloma. MAbs 2016; 8:1386-1397. [PMID: 27362935 DOI: 10.1080/19420862.2016.1207030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although recent advances have substantially improved the management of multiple myeloma, it remains an incurable malignancy. We now demonstrate that anti-CD138 molecules genetically fused to type I interferons (IFN) synergize with the approved therapeutic bortezomib in arresting the proliferation of human multiple myeloma cell lines both in vitro and in vivo. The anti-CD138-IFNα14 fusion protein was active in inducing increased expression of signal transducer and activator of transcription 1 (STAT1) and its phosphorylation while the cell death pathway induced by bortezomib included generation of reactive oxygen species. Interferon regulatory factor 4 (IRF4), an important survival factor for myeloma cells, was down regulated following combination treatment. Induction of cell death appeared to be caspase-independent because treatment with inhibitors of caspase activation did not decrease the level of cell death. The observed caspase-independent synergistic cell death involved mitochondrial membrane depolarization, and poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, and resulted in enhanced induction of apoptosis. Importantly, using 2 different in vivo xenograft models, we found that combination therapy of anti-CD138-IFNα14 and bortezomib was able to cure animals with established tumors (7 of 8 using OCI-My5 or 8 of 8 using NCI-H929). Thus, the combination of anti-CD138-IFNα with bortezomib shows great promise as a novel therapeutic approach for the treatment of multiple myeloma, a malignancy for which there are currently no cures.
Collapse
Affiliation(s)
- Alex Vasuthasawat
- a Department of Microbiology, Immunology and Molecular Genetics , University of California Los Angeles , Los Angeles , CA , USA.,b Molecular Biology Institute, UCLA , Los Angeles , CA , USA
| | - Esther M Yoo
- a Department of Microbiology, Immunology and Molecular Genetics , University of California Los Angeles , Los Angeles , CA , USA.,b Molecular Biology Institute, UCLA , Los Angeles , CA , USA
| | - Kham R Trinh
- a Department of Microbiology, Immunology and Molecular Genetics , University of California Los Angeles , Los Angeles , CA , USA.,b Molecular Biology Institute, UCLA , Los Angeles , CA , USA
| | - Alan Lichtenstein
- c Greater Los Angeles Veterans Administration Healthcare Center , Los Angeles , CA , USA.,d Jonsson Comprehensive Cancer Center , Los Angeles , CA , USA.,e Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, UCLA , Los Angeles , CA , USA
| | - John M Timmerman
- d Jonsson Comprehensive Cancer Center , Los Angeles , CA , USA.,e Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, UCLA , Los Angeles , CA , USA
| | - Sherie L Morrison
- a Department of Microbiology, Immunology and Molecular Genetics , University of California Los Angeles , Los Angeles , CA , USA.,b Molecular Biology Institute, UCLA , Los Angeles , CA , USA
| |
Collapse
|
21
|
Kiefer JD, Neri D. Immunocytokines and bispecific antibodies: two complementary strategies for the selective activation of immune cells at the tumor site. Immunol Rev 2016; 270:178-92. [PMID: 26864112 PMCID: PMC5154379 DOI: 10.1111/imr.12391] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The activation of the immune system for a selective removal of tumor cells represents an attractive strategy for the treatment of metastatic malignancies, which cannot be cured by existing methodologies. In this review, we examine the design and therapeutic potential of immunocytokines and bispecific antibodies, two classes of bifunctional products which can selectively activate the immune system at the tumor site. Certain protein engineering aspects, such as the choice of the antibody format, are common to both classes of therapeutic agents and can have a profound impact on tumor homing performance in vivo of individual products. However, immunocytokines and bispecific antibodies display different mechanisms of action. Future research activities will reveal whether an additive of even synergistic benefit can be obtained from the judicious combination of these two types of biopharmaceutical agents.
Collapse
Affiliation(s)
- Jonathan D Kiefer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| |
Collapse
|