1
|
Zhang G, Jiang P, Tang W, Wang Y, Qiu F, An J, Zheng Y, Wu D, Zhou J, Neculai D, Shi Y, Sheng W. CPT1A induction following epigenetic perturbation promotes MAVS palmitoylation and activation to potentiate antitumor immunity. Mol Cell 2023; 83:4370-4385.e9. [PMID: 38016475 DOI: 10.1016/j.molcel.2023.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/31/2023] [Accepted: 10/31/2023] [Indexed: 11/30/2023]
Abstract
Targeting epigenetic regulators to potentiate anti-PD-1 immunotherapy converges on the activation of type I interferon (IFN-I) response, mimicking cellular response to viral infection, but how its strength and duration are regulated to impact combination therapy efficacy remains largely unknown. Here, we show that mitochondrial CPT1A downregulation following viral infection restrains, while its induction by epigenetic perturbations sustains, a double-stranded RNA-activated IFN-I response. Mechanistically, CPT1A recruits the endoplasmic reticulum-localized ZDHHC4 to catalyze MAVS Cys79-palmitoylation, which promotes MAVS stabilization and activation by inhibiting K48- but facilitating K63-linked ubiquitination. Further elevation of CPT1A incrementally increases MAVS palmitoylation and amplifies the IFN-I response, which enhances control of viral infection and epigenetic perturbation-induced antitumor immunity. Moreover, CPT1A chemical inducers augment the therapeutic effect of combined epigenetic treatment with PD-1 blockade in refractory tumors. Our study identifies CPT1A as a stabilizer of MAVS activation, and its link to epigenetic perturbation can be exploited for cancer immunotherapy.
Collapse
Affiliation(s)
- Guiheng Zhang
- Institute of Immunology, and Department of Respiratory Disease of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, Zhejiang, China
| | - Peishan Jiang
- Institute of Immunology, and Department of Respiratory Disease of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, Zhejiang, China
| | - Wen Tang
- Department of Human Anatomy, Histology and Embryology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yunyi Wang
- Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 7DQ, UK
| | - Fengqi Qiu
- Department of Respiratory Disease of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Jie An
- Institute of Immunology, and Department of Respiratory Disease of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, Zhejiang, China
| | - Yuping Zheng
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, Zhejiang, China
| | - Dandan Wu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, Zhejiang, China
| | - Jianya Zhou
- Department of Respiratory Disease of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Dante Neculai
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, Zhejiang, China
| | - Yang Shi
- Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 7DQ, UK.
| | - Wanqiang Sheng
- Institute of Immunology, and Department of Respiratory Disease of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, Zhejiang, China.
| |
Collapse
|
2
|
Mertowska P, Smolak K, Mertowski S, Grywalska E. Immunomodulatory Role of Interferons in Viral and Bacterial Infections. Int J Mol Sci 2023; 24:10115. [PMID: 37373262 DOI: 10.3390/ijms241210115] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Interferons are a group of immunomodulatory substances produced by the human immune system in response to the presence of pathogens, especially during viral and bacterial infections. Their remarkably diverse mechanisms of action help the immune system fight infections by activating hundreds of genes involved in signal transduction pathways. In this review, we focus on discussing the interplay between the IFN system and seven medically important and challenging viruses (herpes simplex virus (HSV), influenza, hepatitis C virus (HCV), lymphocytic choriomeningitis virus (LCMV), human immunodeficiency virus (HIV), Epstein-Barr virus (EBV), and SARS-CoV coronavirus) to highlight the diversity of viral strategies. In addition, the available data also suggest that IFNs play an important role in the course of bacterial infections. Research is currently underway to identify and elucidate the exact role of specific genes and effector pathways in generating the antimicrobial response mediated by IFNs. Despite the numerous studies on the role of interferons in antimicrobial responses, many interdisciplinary studies are still needed to understand and optimize their use in personalized therapeutics.
Collapse
Affiliation(s)
- Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
3
|
Carlson RJ, Leiken MD, Guna A, Hacohen N, Blainey PC. A genome-wide optical pooled screen reveals regulators of cellular antiviral responses. Proc Natl Acad Sci U S A 2023; 120:e2210623120. [PMID: 37043539 PMCID: PMC10120039 DOI: 10.1073/pnas.2210623120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/06/2023] [Indexed: 04/13/2023] Open
Abstract
The infection of mammalian cells by viruses and innate immune responses to infection are spatiotemporally organized processes. Cytosolic RNA sensors trigger nuclear translocation of the transcription factor interferon regulatory factor 3 (IRF3) and consequent induction of host immune responses to RNA viruses. Previous genetic screens for factors involved in viral sensing did not resolve changes in the subcellular localization of host or viral proteins. Here, we increased the throughput of our optical pooled screening technology by over fourfold. This allowed us to carry out a genome-wide CRISPR knockout screen using high-resolution multiparameter imaging of cellular responses to Sendai virus infection coupled with in situ cDNA sequencing by synthesis (SBS) to identify 80,408 single guide RNAs (sgRNAs) in 10,366,390 cells-over an order of magnitude more genomic perturbations than demonstrated previously using an in situ SBS readout. By ranking perturbations using human-designed and deep learning image feature scores, we identified regulators of IRF3 translocation, Sendai virus localization, and peroxisomal biogenesis. Among the hits, we found that ATP13A1, an ER-localized P5A-type ATPase, is essential for viral sensing and is required for targeting of mitochondrial antiviral signaling protein (MAVS) to mitochondrial membranes where MAVS must be localized for effective signaling through retinoic acid-inducible gene I (RIG-I). The ability to carry out genome-wide pooled screens with complex high-resolution image-based phenotyping dramatically expands the scope of functional genomics approaches.
Collapse
Affiliation(s)
- Rebecca J. Carlson
- Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Michael D. Leiken
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | | | - Nir Hacohen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA02114
| | - Paul C. Blainey
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA02139
| |
Collapse
|
4
|
Temporal Dynamics of the Ruminant Type I IFN-Induced Antiviral State against Homologous Parainfluenza Virus 3 Challenge In Vitro. Viruses 2022; 14:v14051025. [PMID: 35632770 PMCID: PMC9146716 DOI: 10.3390/v14051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Viruses have evolved diverse strategies to evade the antiviral response of interferons (IFNs). Exogenous IFNs were applied to eliminate the counteracting effect and possess antiviral properties. Caprine parainfluenza virus 3 (CPIV3) and bovine parainfluenza virus type 3 (BPIV3) are important pathogens associated with respiratory diseases in goat and cattle, respectively. To explore the feasibility of type I IFNs for control of CPIV3 and BPIV3 infection, the activated effects of IFN-stimulated genes (ISGs) and the immunomodulation responses of goat IFN-α were detected by transcriptomic analysis. Then, the antiviral efficacy of goat IFN-α and IFN-τ against CPIV3 and BPIV3 infection in MDBK cells was evaluated using different treatment routes at different infection times. The results showed that CPIV3 infection inhibited the production of type I IFNs, whereas exogenous goat IFN-α induced various ISGs, the IFN-τ encoding gene, and a negligible inflammatory response. Consequently, goat IFN-α prophylaxis but not treatment was found to effectively modulate CPIV3 and BPIV3 infection; the protective effect lasted for 1 week, and the antiviral activity was maintained at a concentration of 0.1 μg/mL. Furthermore, the antiviral activity of goat IFN-τ in response to CPIV3 and BPIV3 infection is comparable to that of goat IFN-α. These results corroborate that goat IFN-α and IFN-τ exhibit prophylactic activities in response to ruminant respiratory viral infection in vitro, and should be further investigated for a potential use in vivo.
Collapse
|
5
|
Phosphor-IWS1-dependent U2AF2 splicing regulates trafficking of CAR-E-positive intronless gene mRNAs and sensitivity to viral infection. Commun Biol 2021; 4:1179. [PMID: 34635782 PMCID: PMC8505486 DOI: 10.1038/s42003-021-02668-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022] Open
Abstract
AKT-phosphorylated IWS1 promotes Histone H3K36 trimethylation and alternative RNA splicing of target genes, including the U2AF65 splicing factor-encoding U2AF2. The predominant U2AF2 transcript, upon IWS1 phosphorylation block, lacks the RS-domain-encoding exon 2, and encodes a protein which fails to bind Prp19. Here we show that although both U2AF65 isoforms bind intronless mRNAs containing cytoplasmic accumulation region elements (CAR-E), only the RS domain-containing U2AF65 recruits Prp19 and promotes their nuclear export. The loading of U2AF65 to CAR-Elements was RS domain-independent, but RNA PolII-dependent. Virus- or poly(I:C)-induced type I IFNs are encoded by genes targeted by the pathway. IWS1 phosphorylation-deficient cells therefore, express reduced levels of IFNα1/IFNβ1 proteins, and exhibit enhanced sensitivity to infection by multiple cytolytic viruses. Enhanced sensitivity of IWS1-deficient cells to Vesicular Stomatitis Virus and Reovirus resulted in enhanced apoptotic cell death via caspase activation. Inhibition of this pathway may therefore sensitize cancer cells to oncolytic viruses.
Collapse
|
6
|
Froggatt HM, Harding AT, Chaparian RR, Heaton NS. ETV7 limits antiviral gene expression and control of influenza viruses. Sci Signal 2021; 14:14/691/eabe1194. [PMID: 34257104 DOI: 10.1126/scisignal.abe1194] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The type I interferon (IFN) response is an important component of the innate immune response to viral infection. Precise control of IFN responses is critical because insufficient expression of IFN-stimulated genes (ISGs) can lead to a failure to restrict viral spread, whereas excessive ISG activation can result in IFN-related pathologies. Although both positive and negative regulatory factors control the magnitude and duration of IFN signaling, it is also appreciated that several ISGs regulate aspects of the IFN response themselves. In this study, we performed a CRISPR activation screen to identify previously unknown regulators of the type I IFN response. We identified the strongly induced ISG encoding ETS variant transcription factor 7 (ETV7) as a negative regulator of the type I IFN response. However, ETV7 did not uniformly suppress ISG transcription. Instead, ETV7 preferentially targeted a subset of antiviral ISGs that were particularly important for IFN-mediated control of influenza viruses. Together, our data assign a function for ETV7 as an IFN response regulator and also identify ETV7 as a potential therapeutic target to increase innate antiviral responses and enhance IFN-based antiviral therapies.
Collapse
Affiliation(s)
- Heather M Froggatt
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alfred T Harding
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ryan R Chaparian
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
7
|
Matveeva OV, Shabalina SA. Prospects for Using Expression Patterns of Paramyxovirus Receptors as Biomarkers for Oncolytic Virotherapy. Cancers (Basel) 2020; 12:cancers12123659. [PMID: 33291506 PMCID: PMC7762160 DOI: 10.3390/cancers12123659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Some non-pathogenic viruses that do not cause serious illness in humans can efficiently target and kill cancer cells and may be considered candidates for cancer treatment with virotherapy. However, many cancer cells are protected from viruses. An important goal of personalized cancer treatment is to identify viruses that can kill a certain type of cancer cells. To this end, researchers investigate expression patterns of cell entry receptors, which viruses use to bind to and enter host cells. We summarized and analyzed the receptor expression patterns of two paramyxoviruses: The non-pathogenic measles and the Sendai viruses. The receptors for these viruses are different and can be proteins or lipids with attached carbohydrates. This review discusses the prospects for using these paramyxovirus receptors as biomarkers for successful personalized virotherapy for certain types of cancer. Abstract The effectiveness of oncolytic virotherapy in cancer treatment depends on several factors, including successful virus delivery to the tumor, ability of the virus to enter the target malignant cell, virus replication, and the release of progeny virions from infected cells. The multi-stage process is influenced by the efficiency with which the virus enters host cells via specific receptors. This review describes natural and artificial receptors for two oncolytic paramyxoviruses, nonpathogenic measles, and Sendai viruses. Cell entry receptors are proteins for measles virus (MV) and sialylated glycans (sialylated glycoproteins or glycolipids/gangliosides) for Sendai virus (SeV). Accumulated published data reviewed here show different levels of expression of cell surface receptors for both viruses in different malignancies. Patients whose tumor cells have low or no expression of receptors for a specific oncolytic virus cannot be successfully treated with the virus. Recent published studies have revealed that an expression signature for immune genes is another important factor that determines the vulnerability of tumor cells to viral infection. In the future, a combination of expression signatures of immune and receptor genes could be used to find a set of oncolytic viruses that are more effective for specific malignancies.
Collapse
Affiliation(s)
- Olga V. Matveeva
- Sendai Viralytics LLC, 23 Nylander Way, Acton, MA 01720, USA
- Correspondence: (O.V.M.); (S.A.S.)
| | - Svetlana A. Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
- Correspondence: (O.V.M.); (S.A.S.)
| |
Collapse
|
8
|
Møller-Olsen C, Ross T, Leppard KN, Foisor V, Smith C, Grammatopoulos DK, Sagona AP. Bacteriophage K1F targets Escherichia coli K1 in cerebral endothelial cells and influences the barrier function. Sci Rep 2020; 10:8903. [PMID: 32483257 PMCID: PMC7264188 DOI: 10.1038/s41598-020-65867-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Bacterial neonatal meningitis results in high mortality and morbidity rates for those affected. Although improvements in diagnosis and treatment have led to a decline in mortality rates, morbidity rates have remained relatively unchanged. Bacterial resistance to antibiotics in this clinical setting further underlines the need for developing other technologies, such as phage therapy. We exploited an in vitro phage therapy model for studying bacterial neonatal meningitis based on Escherichia coli (E. coli) EV36, bacteriophage (phage) K1F and human cerebral microvascular endothelial cells (hCMECs). We show that phage K1F is phagocytosed and degraded by constitutive- and PAMP-dependent LC3-assisted phagocytosis and does not induce expression of inflammatory cytokines TNFα, IL-6, IL-8 or IFNβ. Additionally, we observed that phage K1F temporarily decreases the barrier resistance of hCMEC cultures, a property that influences the barrier permeability, which could facilitate the transition of immune cells across the endothelial vessel in vivo. Collectively, we demonstrate that phage K1F can infect intracellular E. coli EV36 within hCMECs without themselves eliciting an inflammatory or defensive response. This study illustrates the potential of phage therapy targeting infections such as bacterial neonatal meningitis and is an important step for the continued development of phage therapy targeting antibiotic-resistant bacterial infections generally.
Collapse
Affiliation(s)
| | - Toby Ross
- School of Life Sciences, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| | - Keith N Leppard
- School of Life Sciences, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| | - Veronica Foisor
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| | - Corinne Smith
- School of Life Sciences, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| | - Dimitris K Grammatopoulos
- Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
- Institute of Precision Diagnostics and Translational Medicine, Dept of Pathology, UHCW NHS Trust, Clifford Bridge Road, CV2 2DX, Coventry, UK
| | - Antonia P Sagona
- School of Life Sciences, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV47AL, UK.
| |
Collapse
|
9
|
John SP, Sun J, Carlson RJ, Cao B, Bradfield CJ, Song J, Smelkinson M, Fraser IDC. IFIT1 Exerts Opposing Regulatory Effects on the Inflammatory and Interferon Gene Programs in LPS-Activated Human Macrophages. Cell Rep 2020; 25:95-106.e6. [PMID: 30282041 PMCID: PMC6492923 DOI: 10.1016/j.celrep.2018.09.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 07/06/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Activation of the TLR4 signaling pathway by lipopolysaccharide (LPS) leads to induction of both inflammatory and interferon-stimulated genes, but the mechanisms through which these coordinately activated transcriptional programs are balanced to promote an optimal innate immune response remain poorly understood. In a genome-wide small interfering RNA (siRNA) screen of the LPS-induced tumor necrosis factor α (TNF-α) response in macrophages, we identify the interferon-stimulated protein IFIT1 as a negative regulator of the inflammatory gene program. Transcriptional profiling further identifies a positive regulatory role for IFIT1 in type I interferon expression, implicating IFIT1 as a reciprocal modulator of LPS-induced gene classes. We demonstrate that these effects of IFIT1 are mediated through modulation of a Sin3A-HDAC2 transcriptional regulatory complex at LPS-induced gene loci. Beyond the well-studied role of cytosolic IFIT1 in restricting viral replication, our data demonstrate a function for nuclear IFIT1 in differential transcriptional regulation of separate branches of the LPS-induced gene program.
Collapse
Affiliation(s)
- Sinu P John
- Signaling Systems Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Jing Sun
- Signaling Systems Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Rebecca J Carlson
- Signaling Systems Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Binh Cao
- Signaling Systems Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Clinton J Bradfield
- Signaling Systems Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jian Song
- Bioinformatics Group, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Margery Smelkinson
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Iain D C Fraser
- Signaling Systems Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Marcos-Villar L, Nieto A. The DOT1L inhibitor Pinometostat decreases the host-response against infections: Considerations about its use in human therapy. Sci Rep 2019; 9:16862. [PMID: 31727944 PMCID: PMC6856118 DOI: 10.1038/s41598-019-53239-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022] Open
Abstract
Patients with acute myeloid leukemia frequently present translocations of MLL gene. Rearrangements of MLL protein (MLL-r) in complexes that contain the histone methyltransferase DOT1L are common, which elicit abnormal methylation of lysine 79 of histone H3 at MLL target genes. Phase 1 clinical studies with pinometostat (EPZ-5676), an inhibitor of DOT1L activity, demonstrated the therapeutic potential for targeting DOT1L in MLL-r leukemia patients. We previously reported that down-regulation of DOT1L increases influenza and vesicular stomatitis virus replication and decreases the antiviral response. Here we show that DOT1L inhibition also reduces Sendai virus-induced innate response and its overexpression decreases influenza virus multiplication, reinforcing the notion of DOT1L controlling viral replication. Accordingly, genes involved in the host innate response against pathogens (RUBICON, TRIM25, BCL3) are deregulated in human lung epithelial cells treated with pinometostat. Concomitantly, deregulation of some of these genes together with that of the MicroRNA let-7B, may account for the beneficial effects of pinometostat treatment in patients with MLL-r involving DOT1L. These results support a possible increased vulnerability to infection in MLL-r leukemia patients undergoing pinometostat treatment. Close follow up of infection should be considered in pinometostat therapy to reduce some severe side effects during the treatment.
Collapse
Affiliation(s)
- Laura Marcos-Villar
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049, Madrid, Spain. .,CIBER de Enfermedades Respiratorias CIBERES, Madrid, Spain.
| | - Amelia Nieto
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049, Madrid, Spain. .,CIBER de Enfermedades Respiratorias CIBERES, Madrid, Spain.
| |
Collapse
|
11
|
Wei W, Kong W. Identification of key genes and signaling pathways during Sendai virus infection in vitro. Braz J Microbiol 2019; 50:13-22. [PMID: 30637656 DOI: 10.1007/s42770-018-0021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/18/2018] [Indexed: 11/30/2022] Open
Abstract
Sendai virus (SeV) has been used as a model strain to reveal molecular features of paramyxovirus biology. In this study, we comprehensively analyzed the gene profiling of murine macrophages and airway epithelial cells in response to SeV using gene expression data. The significantly differentially expressed genes (DEGs) were screened by GEO2R. Gene ontology (GO) and pathway enrichment analyses were performed by DAVID. The protein-protein interaction (PPI) map of DEGs was constructed by STRING. The modules of PPI network are produced by molecular complex detection (MCODE) plug-in of Cytoscape. In total, 241 up- and 83 downregulated DEGs were identified in airway epithelial cells while 130 up- and 148 downregulated in macrophage. Particularly, Tmem119 and Colla2 are significantly downregulated in airway epithelial cells and macrophages, respectively. Functional enrichment analysis showed that upregulated DEGs are clustered in innate immunity and inflammatory response in both cell types, whereas downregulated DEGs are involved in host metabolic pathway in airway epithelial cells. PI3K-AKT signaling pathway is downregulated in macrophages. PPI network analysis indicated that some high degree of nodes exist in both cell types, such as Stat1, Tnf, and Cxcl10. In conclusion, SeV infection can induce different host cell responses in airway epithelial cells and macrophages.
Collapse
Affiliation(s)
- Wenqiang Wei
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China. .,Department of Physiology and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore.
| | - Wanting Kong
- Department of Physiology and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| |
Collapse
|
12
|
Ershov FI, Narovlyansky AN. THEORETICAL AND APPLIED ASPECTS OF THE INTERFERON SYSTEM: TO THE 60TH ANNIVERSARY OF THE DISCOVERY OF INTERFERONS. Vopr Virusol 2018; 63:10-18. [PMID: 36494992 DOI: 10.18821/0507-4088-2018-63-1-10-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/13/2022]
Abstract
The review contains a brief analysis of the 60-year history of the discovery, study and medical application of interferons, a new group of remarkable proteins that have found wide medical application in the therapy of virological, oncological, neurological, ophthalmic and other pathologies. Modern data on the classification of interferons and the mechanisms of their action are given. Particular attention is paid to the clinical use of medications of interferon and its inducers.
Collapse
Affiliation(s)
- F I Ershov
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya
| | - A N Narovlyansky
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya
| |
Collapse
|