1
|
Xia Y, Luo Q, Gao Q, Huang C, Chen P, Zou Y, Chen X, Liu W, Chen Z. SIRT1 activation ameliorates rhesus monkey liver fibrosis by inhibiting the TGF-β/smad signaling pathway. Chem Biol Interact 2024; 394:110979. [PMID: 38555046 DOI: 10.1016/j.cbi.2024.110979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
TGF-β/Smad signaling pathway plays an important role in the pathogenesis and progression of liver fibrosis. Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+) dependent enzyme and responsible for deacetylating the proteins. Increasing numbers of reports have shown that the molecular mechanism of SIRT1 as an effective therapeutic target for liver fibrosis but the transformation is not very clear. In the present study, liver fibrotic tissues were screened by staining with Masson, hematoxylin-eosin staining (H&E) and Immunohistochemistry (IHC) for histopathological observation from the liver biopsy of seventy-seven rhesus monkey, which fixed with 4% paraformaldehyde (PFA) after treatment with high-fat diet (HFD) for two years. And the liver function was further determined by serum biochemical tests. The mRNA levels and protein expression of rat hepatic stellate (HSC-T6) cells were determined after treatment with Resveratrol (RSV) and Nicotinamide (NAM), respectively. The results showed that with the increasing of hepatic fibrosis in rhesus monkeys, the liver function impaired, and the transforming growth factor-β1 (TGF-β1), p-Smad3 (p-Smad3) and alpha-smooth muscle actin (α-SMA) was up-regulated, while SIRT1 and Smad7 were down-regulated. Moreover, when stimulated the HSC-T6 with RSV to activate SIRT1 for 6, 12, and 24 h, the results showed that RSV promoted the expression of smad7, while the expression of TGF-β1, p-Smad3 and α-SMA were inhibited. In contrast, when the cells stimulated with NAM to inhibit SIRT1 for 6, 12, and 24 h, the Smad7 expression was decreased, while TGF-β1, p-Smad3, and α-SMA expressions were increased. These results indicate that SIRT1 acts as an important protective factor for liver fibrosis, which may be attributed to inhibiting the signaling pathway of TGF-β/Smad in hepatic fibrosis of the rhesus monkey.
Collapse
Affiliation(s)
- Yu Xia
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Animal Disease Prevention and Control and Healthy Breeding Engineering Technology, Research Centre, Mianyang Normal University, Mianyang, 621000, China
| | - Qihui Luo
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Primed Bio-Tech Group Co., Ltd., Chengdu, 610041, China
| | - Qi Gao
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chao Huang
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Chen
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yao Zou
- Wanzhou District Livestock Industry Development Center, Chongqing, 404120, China
| | - Xiwen Chen
- Animal Disease Prevention and Control and Healthy Breeding Engineering Technology, Research Centre, Mianyang Normal University, Mianyang, 621000, China
| | - Wentao Liu
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhengli Chen
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Primed Bio-Tech Group Co., Ltd., Chengdu, 610041, China.
| |
Collapse
|
2
|
Roshani M, Jafari A, Loghman A, Sheida AH, Taghavi T, Tamehri Zadeh SS, Hamblin MR, Homayounfal M, Mirzaei H. Applications of resveratrol in the treatment of gastrointestinal cancer. Biomed Pharmacother 2022; 153:113274. [PMID: 35724505 DOI: 10.1016/j.biopha.2022.113274] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Natural product compounds have lately attracted interest in the scientific community as a possible treatment for gastrointestinal (GI) cancer, due to their anti-inflammatory and anticancer properties. There are many preclinical, clinical, and epidemiological studies, suggesting that the consumption of polyphenol compounds, which are abundant in vegetables, grains, fruits, and pulses, may help to prevent various illnesses and disorders from developing, including several GI cancers. The development of GI malignancies follows a well-known path, in which normal gastrointestinal cells acquire abnormalities in their genetic composition, causing the cells to continuously proliferate, and metastasize to other sites, especially the brain and liver. Natural compounds with the ability to affect oncogenic pathways might be possible treatments for GI malignancies, and could easily be tested in clinical trials. Resveratrol is a non-flavonoid polyphenol and a natural stilbene, acting as a phytoestrogen with anti-cancer, cardioprotective, anti-oxidant, and anti-inflammatory properties. Resveratrol has been shown to overcome resistance mechanisms in cancer cells, and when combined with conventional anticancer drugs, could sensitize cancer cells to chemotherapy. Several new resveratrol analogs and nanostructured delivery vehicles with improved anti-GI cancer efficacy, absorption, and pharmacokinetic profiles have already been developed. This present review focuses on the in vitro and in vivo effects of resveratrol on GI cancers, as well as the underlying molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Hossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mina Homayounfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Caribé PMV, Villar CC, Romito GA, Takada JY, Pacanaro AP, Strunz CMC, César LAM, Mansur ADP. Prospective, case-controlled study evaluating serum concentration of sirtuin-1 and mannose-binding lectin in patients with and without periodontal and coronary artery disease. Ther Adv Chronic Dis 2020; 11:2040622320919621. [PMID: 32435441 PMCID: PMC7223200 DOI: 10.1177/2040622320919621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/25/2020] [Indexed: 01/02/2023] Open
Abstract
Background: Atherosclerosis and periodontal disease (PD) are inflammatory diseases that have been shown in studies to have a direct association. Mannose-binding lectin (MBL) is an immune system protein that binds to periodontal pathogens favoring phagocytosis. Conversely, increased serum sirtuin-1 (SIRT1) concentration reduces the inflammatory process. Methods: This was a prospective, case-controlled study that analyzed serum concentration of biomarkers in patients with or without coronary artery disease (CAD) and PD. A total of 78 patients were evaluated: 20 healthy individuals, 18 patients with CAD, 20 patients with PD, and 20 patients with both PD and CAD. Clinical and laboratory characteristics were analyzed before and after nonsurgical treatment of PD and also at two equivalent times in patients without PD. Serum MBL and SIRT1 concentration were analyzed by enzyme-linked immunosorbent assay. Results: A negative correlation was observed between changes in serum concentration of MBL and SIRT1 (r = −0.30; p = 0.006). Comparison between pre- and post-treatment of PD showed a reduction in MBL levels (886.27 ± 906.72 versus 689.94 ± 808.36; p = 0.002) and an increase in SIRT1 values (0.80 ± 1.01 versus 1.49 ± 1.55; p = 0.005) in patients with PD and without CAD. The same result was observed in patients with PD and CAD for MBL and SIRT1, respectively, of 1312.43 ± 898.21 versus 1032.90 ± 602.52 (p = 0.010) and 1.32 ± 1.0 versus 1.82 ± 1.75 (p = 0.044). Conclusion: PD treatment reduced MBL serum concentration and increased SIRT1 serum concentration in patients with and without CAD.
Collapse
Affiliation(s)
| | - Cristina Cunha Villar
- Division of Periodontology, Stomatology Department, Dental School, University of São Paulo, São Paulo, Brazil
| | - Guiseppe Alexandre Romito
- Division of Periodontology, Stomatology Department, Dental School, University of São Paulo, São Paulo, Brazil
| | - Júlio Yoshio Takada
- Clinical Department, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Ana Paula Pacanaro
- Clinical Department, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | | | | | - Antonio de Padua Mansur
- Clinical Department, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas C. Aguiar, 44, CEP, São Paulo, 05403-000, Brazil
| |
Collapse
|
4
|
Caribé PMV, Villar CC, Romito GA, Pacanaro AP, Strunz CMC, Takada JY, Cesar LAM, Mansur ADP. Influence of the treatment of periodontal disease in serum concentration of sirtuin 1 and mannose-binding lectin. J Periodontol 2020; 91:900-905. [PMID: 31749165 DOI: 10.1002/jper.19-0236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/02/2019] [Accepted: 09/05/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND Increased levels of periodontal pathogens disrupt the homeostasis between the host and its microbiota and increase susceptibility to periodontal diseases. Periodontitis increases the serum concentration of mannose-binding lectin (MBL), which exacerbates local inflammatory processes. In animal studies, sirtuin 1 (SIRT1) was associated with protection against inflammation. This study analyzed the influence of non-surgical periodontal treatment on serum levels of MBL and SIRT1. METHODS Forty patients with periodontitis and 38 periodontally healthy individuals (aged 45 to 79 years) were included. Periodontitis patients received scaling and root planing using machine driven and hand instruments. Clinical parameters, inflammatory biomarkers, MBL, and SIRT1 levels were measured at baseline and at post-treatment. RESULTS For all patients, an inverse correlation was observed between serum concentrations of MBL and SIRT1 (r = -0.30; P = 0.006). Periodontal treatment reduced serum concentrations of MBL (1,099.35 ± 916.59 to 861.42 ± 724.82 ng/mL; P < 0.001) and C-reactive protein (6.05 ± 8.99 to 2.49 ± 2.89 mg/L; P = 0.009). By contrast, SIRT1 serum levels increased (1.06 ± 1.03 to 1.66 ± 1.64 ng/mL; P < 0.001) following periodontal treatment. CONCLUSIONS Periodontal treatment was associated with decreased serum concentrations of MBL and CRP and increased serum levels of SIRT1. Prospective studies are needed to assess the impact of these biomarkers on pathophysiology of periodontitis.
Collapse
Affiliation(s)
- Pérola Michelle Vasconcelos Caribé
- Clinical Department, Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil.,Division of Periodontology, Stomatology Department, Dental School, University of Sao Paulo, Sao Paulo, Brazil PhD thesis of the Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil
| | - Cristina Cunha Villar
- Division of Periodontology, Stomatology Department, Dental School, University of Sao Paulo, Sao Paulo, Brazil PhD thesis of the Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil
| | - Giuseppe Alexandre Romito
- Division of Periodontology, Stomatology Department, Dental School, University of Sao Paulo, Sao Paulo, Brazil PhD thesis of the Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil
| | - Ana Paula Pacanaro
- Clinical Department, Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil
| | | | - Júlio Yoshio Takada
- Clinical Department, Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil
| | | | - Antonio de Padua Mansur
- Clinical Department, Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
5
|
Li Y, Zhu M, Huo Y, Zhang X, Liao M. Anti-fibrosis activity of combination therapy with epigallocatechin gallate, taurine and genistein by regulating glycolysis, gluconeogenesis, and ribosomal and lysosomal signaling pathways in HSC-T6 cells. Exp Ther Med 2018; 16:4329-4338. [PMID: 30542382 PMCID: PMC6257822 DOI: 10.3892/etm.2018.6743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/21/2017] [Indexed: 12/24/2022] Open
Abstract
A previous study by our group indicated that combined treatment with taurine, epigallocatechin gallate (EGCG) and genistein protects against liver fibrosis. The aim of the present study was to elucidate the antifibrotic mechanism of this combination treatment using isobaric tag for relative and absolute quantification (iTRAQ)-based proteomics in an activated rat hepatic stellate cell (HSC) line. In the present study, HSC-T6 cells were incubated with taurine, EGCG and genistein, and cellular proteins were extracted and processed for iTRAQ labeling. Quantification and identification of proteins was performed using two-dimensional liquid chromatography coupled with tandem mass spectrometry. Proteomic analysis indicated that the expression of 166 proteins were significantly altered in response to combination treatment with taurine, EGCG and genistein. A total 76 of these proteins were upregulated and 90 were downregulated. Differentially expressed proteins were grouped according to their association with specific Kyoto Encyclopedia of Genes and Genomes pathways. The results indicated that the differentially expressed proteins hexokinase-2 and lysosome-associated membrane glycoprotein 1 were associated with glycolysis, gluconeogenesis and lysosome signaling pathways. The expression of these proteins was validated using western blot analysis; the expression of hexokinase-2 was significantly decreased and the expression of lysosome-associated membrane glycoprotein 1 was significantly increased in HSC-T6 cells treated with taurine, EGCG and genistein compared with the control, respectively (P<0.05). These results were in accordance with the changes in protein expression identified using the iTRAQ approach. Therefore, the antifibrotic effect of combined therapy with taurine, EGCG and genistein may be associated with the activation of several pathways in HSCs, including glycolysis, gluconeogenesis, and the ribosome and lysosome signaling pathways. The differentially expressed proteins identified in the current study may be useful for treatment of liver fibrosis in the future.
Collapse
Affiliation(s)
- Yan Li
- Guangxi University Library, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Min Zhu
- Guangxi University Library, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Yani Huo
- Medical Scientific Research Centre, Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Xuerong Zhang
- Medical Scientific Research Centre, Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Ming Liao
- Medical Scientific Research Centre, Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|