1
|
Wang L, Mei X, Liu X, Guo L, Yang B, Chen R. The Interleukin-33/ST2 Axis Enhances Lung-Resident CD14+ Monocyte Function in Patients with Non-Small Cell Lung Cancer. Immunol Invest 2023; 52:67-82. [PMID: 36218388 DOI: 10.1080/08820139.2022.2130075] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Interleukin-33 (IL-33) binds to its cognate receptor suppression of tumorigenicity 2 (ST2), leading to critical modulatory roles in immune responses during inflammation and cancers. The aim of this study was to investigate the role of IL-33/ST2 signaling in monocyte function in non-small cell lung cancer (NSCLC). Sixty-two NSCLC patients and nineteen controls were enrolled. IL-33 levels and ST2 expression were measured in peripheral blood and bronchoalveolar lavage fluid (BALF) by ELISA and flow cytometry. HLA-DR expression by CD14+ monocytes, granzyme B and proinflammatory cytokine secretion were also investigated in lipopolysaccharide-stimulated cells. CD14+ monocytes purified from BALF in the tumor site were stimulated with IL-33 in vitro, and co-cultured with a lung cancer cell line A549 cells. The cytotoxicity of monocytes with IL-33 stimulation was then assessed. IL-33 levels were lower in the peripheral blood and tumor microenvironment of NSCLC patients. There was no significant difference in peripheral ST2 expression between NSCLC patients and controls. Soluble ST2 levels were increased but membrane-bound ST2 expression in CD14+ monocytes was decreased in tumor microenvironment of NSCLC patients. There were no remarkable differences in either HLA-DR expression or proinflammatory cytokine secretion by circulating CD14+ monocytes between NSCLC patients and controls. CD14+ monocytes in the tumor microenvironment revealed a dysfunctional phenotype, which presented as lower HLA-DR expression and reduced granzyme B and proinflammatory cytokines. A higher concentration of IL-33 stimulation promoted tumor-resident CD14+ monocyte-induced target cell death. The present study indicates that IL-33/ST2 signaling pathway might enhance the activity of tumor-resident CD14+ monocytes in NSCLC.
Collapse
Affiliation(s)
- Lv Wang
- Department of Thoracic Surgery, Xi'an Daxing Hospital, Xi'an, Shaanxi, China
| | - Xingke Mei
- Department of Thoracic Surgery, Xi'an Daxing Hospital, Xi'an, Shaanxi, China
| | - Xiaogang Liu
- Department of Thoracic Surgery, Xi'an Daxing Hospital, Xi'an, Shaanxi, China
| | - Lu Guo
- Department of Thoracic Surgery, Xi'an Daxing Hospital, Xi'an, Shaanxi, China
| | - Bo Yang
- Department of Thoracic Surgery, Xi'an Daxing Hospital, Xi'an, Shaanxi, China
| | - Ren'an Chen
- The Second Department of Internal Medicine, Shaanxi Cancer Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
He H, Shi L, Meng D, Zhou H, Ma J, Wu Y, Wu Y, Gu Y, Xie W, Zhang J, Zhu Y. PD-1 blockade combined with IL-33 enhances the antitumor immune response in a type-1 lymphocyte-mediated manner. Cancer Treat Res Commun 2021; 28:100379. [PMID: 33951555 DOI: 10.1016/j.ctarc.2021.100379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023]
Abstract
PD-1 immune checkpoint blockade and cytokine IL-33 have shown significant therapeutic effects in tumor immunotherapy. These therapies promote CD8+ T cell activation, proliferation, and effector functions. However, there were few research about the combined therapy efficacy. In this study, we established B16-empty vector and B16-IL33 melanoma mouse models and treated with PD-1 monoclonal antibody. We reported that PD-1 blockade combined with cytokine IL-33 further inhibited tumor progression and prolonged the survival of tumor-bearing mice. Mechanistically, the combination therapy was found to further facilitate CD4+ and CD8+ T lymphocytes accumulation, and enhance the antitumor effects of CD4+or CD8+tumor-infiltrating lymphocytes by promoting type-1 immune response within the tumor microenvironment using flow cytometry and quantitative real time polymerase chain reaction. Thus, PD-1 blockade combined with IL-33 has application potential in tumor immunotherapy. Further, this study provides a new promising strategy and theoretical basis for tumor combination immunotherapy.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Cell Line, Tumor
- Drug Synergism
- Female
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Immunotherapy
- Interleukin-33/pharmacology
- Interleukin-33/therapeutic use
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice, Transgenic
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Honghong He
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; Suzhou Blood Center, Suzhou 215006, China
| | - Liyan Shi
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Dan Meng
- Suzhou Junmeng Biopharm Co., Ltd, Suzhou 215200, China
| | - Huijun Zhou
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Jingshu Ma
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yixian Wu
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yanshi Wu
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yanzheng Gu
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou 215006, China; Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wei Xie
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Jing Zhang
- Suzhou Junmeng Biopharm Co., Ltd, Suzhou 215200, China
| | - Yibei Zhu
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou 215006, China; Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
3
|
Jevtovic A, Pantic J, Jovanovic I, Milovanovic M, Stanojevic I, Vojvodic D, Arsenijevic N, Lukic ML, Radosavljevic GD. Interleukin-33 pretreatment promotes metastatic growth of murine melanoma by reducing the cytotoxic capacity of CD8 + T cells and enhancing regulatory T cells. Cancer Immunol Immunother 2020; 69:1461-1475. [PMID: 32285171 DOI: 10.1007/s00262-020-02522-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/15/2020] [Indexed: 01/08/2023]
Abstract
Interleukin-33 (IL-33) regulates innate and acquired immune response to pathogens, self-antigens and tumors. IL-33 effects on tumors depend on the dose and mode of administration along with the type of malignancy. We studied the effects of IL-33 on the development of primary and metastatic melanoma induced by B16-F1 cell line in C57BL/6 mice. Intraperitoneally applied IL-33 restricts primary tumor growth. When administered intranasally 3 days prior to the intravenous injection of the tumor cells, IL-33 promoted growth of B16-F1 melanoma metastases, while B16-F10 gave massive metastases independently of IL-33. To mimic natural dissemination, we next used a limited number (5 × 104) of B16-F1 cells intravenously followed by application of IL-33 intraperitoneally. IL-33 increased the size of metastases (10.96 ± 3.96 mm2) when compared to the control group (0.86 ± 0.39 mm2), without changing incidence and number of metastases. IL-33 increased expression of ST2 on both tumor and immune cells in metastases. Also, IL-33 enhanced eosinophils and anti-tumor NK cells in the lung. The striking finding was reduced cytotoxicity of CD8+ T cells derived from metastatic lung of IL-33 injected mice. IL-33 reduced the percentage of TNF-α+ and IFN-γ+ CD8+ T cells while increasing the frequency of CD8+ T cells that express inhibitory molecules (PD-1, KLRG-1 and CTLA-4). There was a significant accumulation of CD11b+Gr-1+ myeloid suppressor cells and FoxP3+, IL-10+ and CTLA-4+ regulatory T cells in the metastatic lung of IL-33 injected mice. The relevance of IL-33 for melanoma metastases was also documented in a significantly increased level of serum IL-33 in stage III melanoma patients.
Collapse
Affiliation(s)
- Andra Jevtovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia.,Department of Otorhinolaryngology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Pantic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia
| | - Ivan Stanojevic
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia
| | - Miodrag L Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia.
| | - Gordana D Radosavljevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia.
| |
Collapse
|
4
|
Liu L, He H, Xu D, Feng Y, Zhou H, Shi L, Gu Y, Wang J, Zhu Y. Association between interleukin-36γ and tumor progression in non-small cell lung cancer. Oncol Lett 2020; 19:2457-2465. [PMID: 32194745 PMCID: PMC7039103 DOI: 10.3892/ol.2020.11319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/13/2019] [Indexed: 01/21/2023] Open
Abstract
Immunotherapy is effective in improving the survival and prognosis of patients with non-small cell lung cancer (NSCLC), and identifying effective immunomarkers is important for immunotherapy. Interleukin (IL)-36γ is a novel immunomarker that has an important function in the antitumor immune response. The present study investigated the association between IL-36γ and NSCLC to provide novel insight into immunotherapy for patients with NSCLC. Tissue microarrays of lung adenocarcinoma and squamous cell carcinoma were purchased for immunohistochemical analysis of IL-36γ expression levels and clinical parameters. In addition, fresh clinical NSCLC and adjacent normal tissue samples were collected to analyze IL-36γ mRNA expression levels using quantitative PCR. IL-36γ protein was primarily located in the cytoplasm, with a small quantity in the nucleus, and IL-36γ mRNA and protein expression levels in lung cancer tissues were significantly higher compared with those in adjacent normal tissues. Elevated IL-36γ protein expression levels were significantly associated with a higher tumor grade of lung adenocarcinoma; however, IL-36γ mRNA expression levels were inversely associated with the clinical Tumor-Node-Metastasis stage in patients with lung squamous cell carcinoma. In addition, patients with adenocarcinoma with high IL-36γ protein expression levels tended to longer post-operative survival times. These findings indicate that IL-36γ may have potential as an immunomarker for prediction of tumor progression and survival in patients with NSCLC.
Collapse
Affiliation(s)
- Lin Liu
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Honghong He
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Suzhou Blood Center, Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Dan Xu
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Clinical Laboratory, Yancheng Maternal and Child Health Hospital, Yancheng, Jiangsu 224002, P.R. China
| | - Yuehua Feng
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Huijun Zhou
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Liyan Shi
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yanzheng Gu
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| | - Yibei Zhu
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
5
|
He H, Tang L, Jiang N, Zheng R, Li W, Gu Y, Wang M. Characterization of peripheral blood mononuclear cells isolated using two kinds of leukocyte filters. Transfus Clin Biol 2019; 27:10-17. [PMID: 31812494 DOI: 10.1016/j.tracli.2019.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The objective of this study was to compare the activity and biological function of leukocytes isolated using apheresis platelet leukoreduction system chambers (LRSC), whole blood leukoreduction filters (LRF), and leukocytes in unfiltered peripheral whole blood (WB). METHODS Peripheral blood mononuclear cells (PBMCs) and granulocytes were obtained by density gradient centrifugation using recovery filters and WB. Flow cytometry was used to detect the activity, phenotype, and apoptosis ratio of each cell subtype. RESULTS The proportion of lymphocytes obtained from PBMCs was similar when using the two different filters as compared to traditional isolation; however, there were significant differences between the monocytes and granulocytes. The phenotypic frequency of lymphocytes was similar, but the apoptosis rate of lymphocytes from the two filters was slightly higher. Additionally, monocytes isolated via the three sources were able to be induced into dendritic cells expressing specific molecules; Granulocytes isolated from the LRF showed a lower purity and a higher level of apoptosis than granulocytes isolated from the WB. CONCLUSION Compared with WB, the PBMCs isolated from the filters used in our blood center had no statistical difference in their activity and biological function, but they did differ in the proportion and quantity of monocytes and granulocytes. Our results show that the two filters can be used as an alternative method to collect leukocytes, which solves the problem of an insufficient blood supply for clinical and basic science research. Thus, these filters have significant value beyond their practical use in clinics.
Collapse
Affiliation(s)
- H He
- Suzhou Blood Center, 215006 Suzhou, China.
| | - L Tang
- Suzhou Blood Center, 215006 Suzhou, China.
| | - N Jiang
- Suzhou Blood Center, 215006 Suzhou, China.
| | - R Zheng
- Suzhou Blood Center, 215006 Suzhou, China.
| | - W Li
- Suzhou Blood Center, 215006 Suzhou, China.
| | - Y Gu
- Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 215006 Suzhou, China.
| | - M Wang
- Suzhou Blood Center, 215006 Suzhou, China.
| |
Collapse
|